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Calibrated spline estimation of detailed 
fertility schedules from abridged data*

Carl P. Schmertmann**

I develop and explain a new method for interpolating detailed fertility schedules from age-
group data. The method allows estimation of fertility rates over any fine grid of ages, from 
either standard or non-standard age groups. The new method, called the calibrated spline (CS) 
estimator, expands an abridged fertility schedule by finding the smooth curve that minimizes 
a squared error penalty. The penalty is based both on fit to the available age-group data, and 
on similarity to patterns of 1fx schedules observed in the Human Fertility Database (HFD) and 
in the US Census International Database (IDB). I compare the CS estimator to a very good 
alternative method that requires more computation: Beers interpolation. The results show 
that CS replicates known 1fx schedules from 5fx data better, and its interpolated schedules 
are also smoother. The conclusion is that the CS method is an easily computed, flexible, and 
accurate method for interpolating detailed fertility schedules from age-group data. Users can 
calculate detailed schedules directly from the input data, using only elementary arithmetic. 
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* Data and R programs for replicating this paper’s results are available online at <http://calibrated-spline.schmert.net/REBEP>.
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Introduction 

Demographers like precise data for exact ages, but unfortunately we often get the 
opposite – noisy sample estimates aggregated into wide age groups.  Worse, sometimes 
the age groups do not cover the entire range of interest for the behavior under study. With 
abridged, partial, or noisy data, demographic calculations often require interpolation and 
extrapolation of age-specific rates. 

In this paper I introduce a method for fitting detailed fertility schedules to coarse, possibly 
noisy data. The method exploits a large new dataset, the Human Fertility Database (HFD), 
to identify empirical regularities in fertility schedules by single years of age 12-54. It then 
uses these regularities in a penalized least squares framework to produce simple rules for 
expanding grouped data (usually 5fx estimates) into detailed rates over an arbitrarily fine 
grid of ages that may extend outside the range of the original data (for example, below age 
15 or above age 50). 

The new method uses spline functions as building blocks, and identifies smooth fertility 
schedules that match group-level data closely while also conforming to patterns observed in 
the HFD. I call the result of the procedure a calibrated spline (CS) schedule. Its derivation uses 
some rather dense matrix algebra, but the end result is exceedingly simple: basic arithmetic 
with the grouped data and a set of predetermined constants.  

Notation and derivation of the calibrated spline estimator

In the next two sections I explain and derive the CS estimator. Readers uninterested in 
the mathematical details may, without difficulty, skip ahead to the penultimate paragraph of 
the next section, beginning with The key point is….  

Suppose that the fertility schedule can be well approximated by a weighted sum of K 
continuous basis functions:
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where bi΄is a 1xK vector containing the value of each basis function at a=ai, and B is thus an 
NxK matrix of known constants. 

In general, the {a1} grid can be arbitrarily fine, over any age range of interest, and there are 
many possible choices for the number and form of basis functions {bk}. In the calculations in 
this paper, α=12, β=55, N=86, Δ=.50, there are separate fertility rates for intervals centered 
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at 12.25, 12.75,…54.75. I use quadratic B-spline basis functions (BOOR, 1978; EILERS; MARX, 
1996) over uniform knots at two-year intervals.1

When fertility data is reported as averages for age groups (call the groups A1…Ag), we 
need multipliers for aggregating f. The Nx1 vector f is related to the gx1 vector of group 
averages (called y from here on) by: 
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 and I[.] is a 0/1 indicator function. The fine grid f is 

similarly related to single-year rates by: 
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where ])(1)([ iaiIS jij +<≤−+⋅Δ= αα .

Objective and estimation strategy

Suppose that we observe y, a g x 1 vector of sample estimates for age group averages. 
We want to estimate the K spline weights θ (and ultimately, the N elements of the discretized 
schedule f ) from the g estimates in y. When K>g (i.e., when there are more than g basis 
functions) fitting and estimation requires additional identifying information of some kind. 

I propose two criteria for a good schedule f: it should (1) closely fit the observed 
data y, (2) have an age pattern similar to known single-year schedules – specifically, to 
schedules downloaded from the Human Fertility Database (HFD, 2012) and in the US Census 
International Database (SCHMERTMANN, 2003, file III). For these criteria, which I call fit and 
shape respectively, one can construct vectors of residuals that should be near zero for good 
schedules.  These vectors are:
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The M matrix for shape residuals has a complicated construction, but a simple 

interpretation. Construction is as follows. I first assemble a 43x530 matrix F, comprising 
304 single-year ASFR schedules from the HFD over ages 12…54,2 plus an additional 226 

1 Specifically, basis functions come from the bs(  ) function in R (R CORE DEVELOPMENT TEAM, 2011), with arguments 
x=seq(12.25, 54.75, .50), knots=seq(12,54,2), and degree=2. I retain the third through twenty-first columns of the resulting 
matrix as an 86x19matrix B. 
2 The HFD version that I used has 1480 single-year schedules, many of which are from the same country in consecutive 
calendar years. In order to limit the overcounting of highly correlated schedules, I used every fifth year from each population 
– e.g., Austria 1953, 1958, …, 2008, Bulgaria 1949, 1954, …, 2009, and so on.
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estimated single-year schedules from the US Census International Database (IDB) using the 
quadratic spline model and coefficients from Schmertmann (2003,file III).3 Singular value 
decomposition F=UDV’ yields orthonormal principal component vectors in U’s columns. The 
first three of these columns (call this 43x3 matrix X) account for approximately 95% of the 
variation in F, in the sense that projections of any single-year schedule s onto the column 
space of X have small errors:

( )ssse PI −=−= 43
� (6) 

where P= X(X’X)-1X’ is the projection matrix for the column space of X.
Defining M=(I43-P), shape residuals in Equation (5) represent the portion of a single-year 

schedule that is unexplained by linear combinations of principal components. In other words, 
shape residuals εs in Equation (5) are large for single-year schedules that have age patterns 
unlike those observed in the HFD and IDB.4

Each criterion can be converted into a scalar index of a schedule’s “badness” by calculating 
an appropriately weighted sum of squares. These scalar penalty terms have generic form: 

},{1 sfcP cccc ∈ʹ= − εε V (7)     
where Vc = E[εcεc’] is the covariance of εc. 

The covariance matrix of fitting errors εf can be approximated logically. Supposing that the 
estimates in the vector y represent ratios of births to an average of W women sampled in each 
age group, and that a typical age-specific rate is approximately 0.10, then with independent 
sampling errors across groups the covariance of εf is:5

( ) gWfff E IV 10
1)( ≈ʹ= εε (8)         

and its inverse is:
( ) gf WW IV 10)(1 ≈− (9)    

These assumptions are crude, but results are not very sensitive to them. The main point 
is that with large sample sizes, schedules that fit age group averages poorly get extremely 
heavy penalties.  

For the covariance of shape residuals, we refer to the single-year schedules in the HFD.  
For each of the 1480 schedules (s) in the HFD single-year data, one can calculate es=Ms. 
The average outer product of these HFD shape residuals serves as a covariance estimate:

)( sss ee ʹ=V (10)  

3 It is slightly clumsy to split the five-year IDB schedules into approximate single-year schedules in order to include them 
in the analysis, but adding these schedules is important. The HFD does not yet include countries from Africa and Asia that 
have very distinct age patterns – in particular African schedules often have relatively high fertility at ages 35+, and some 
East Asian schedules have extremely low fertility at ages below 25. Estimation of SVD principal components from a matrix 
that includes the wider variety of patterns in the IDB produces a much more representative set of “typical” age schedules.
4 More precisely, a schedule f has large shape residuals when Sf lies far from the column space of X. It is possible for f to 
have low shape residuals even if it is unlike any observed schedule, if f is well approximated by a combination of principal 
components that has no counterpart in the database. 
5 The calculation assumes that B, the number of births to W women with true rate f, is a Poisson random variable with mean 
and variance Wf. A sample estimate yk= B/W therefore has variance f/W. 
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Vs provides information about which ages are likely to have large or small residuals, and 
about the age patterns among those residuals.6

Summing the penalties produces a single index that is appropriately calibrated to the 
available information about errors:7
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where

( ) MSBVM’S’B’GBG’B’Q 110 −+= sW W (12) 
and

( ) GBR ʹʹ= WW 10 (13)                                              
Because QW is positive definite, expression in Equation (11) has a unique minimum when 

weights are yWW RQ 1* −=θ . Thus, for estimated fertility rates y that come from samples of 
approximately W women per age group, the combination of basis function that minimizes 
the joint criterion in Equation (11) is a vector that I call the calibrated spline (CS) fit:

yyf WWW KRQBB === −1** θ (14)     
The key point is that this complex derivation leads to a simple result: the optimal schedule 

f is a linear function of the observed data y. Given a sample size, the N x g matrix KW contains 
predetermined constants, so that we can write the CS vector f* as a weighted sum of g columns:
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In principle, this framework allows a demographer to create customized, simple 

arithmetical rules for transforming fertility estimates from any set of g age groups into a 
schedule over an arbitrarily fine grid of N rates over any age span of interest. The method 
is particularly straightforward because the “parameters” for the empirical model are the 
estimated age-group fertility rates themselves, so that fitting the model requires only 
multiplication and addition.

In practice, researchers can simplify further by using one of the pre-calculated KW 
matrices, for W = 100, 1000, 10000, or 100000 and common age groups, available online at  
<http://calibrated-spline.schmert.net/REBEP>. For larger sample sizes, multipliers vary little 
from the W=100,000 case; I recommend using the W=100,000 constants for samples with 
W > 100,000. If the sample size is unknown, I recommend using W=1000. After selecting 
the right order of magnitude W for sample sizes  a demographer can produce a schedule 
6 Adding a small constant to each diagonal element of Vs before inverting stabilizes results considerably. I add 0.1 times 
the median value of the diagonal elements from Equation (10).
7 There is also a natural Bayesian interpretation for this index: the fitting penalty comes from the log likelihood of a multivariate 
normal distribution, and the shape penalty terms come from an improper multivariate normal prior.
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for ages 12.25, … 54.75 directly from age group averages y by multiplying f* = KW y as in 
Equation (15).

Example fits with HFD, IDB, and Brazilian data

The CS method outlined above works for any set of age groups, but I deal with two 
specific examples in the rest of this paper – cases in which (a) data are available for g=7 
age groups 15-19 through 45-49, as in the US Census International Database (IDB) and 
many other datasets, or (b) data are available for g=9 five-year age groups 10-14 through 
50-54, as in the HFD.8 

GRAPH 1 
Empirical basis functions for a fitted schedule at half-year intervals over [12,55]
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Source: Author’s calculations based on Equation (14). 
Note: Each line represents one column of K10000. These curves are multiplied by 5fx values (g=7 and g=9 of them in top and bottom 
panels, respectively) and then summed to produce the final CS fit.

Graph 1 illustrates K10000 for the g=7 and g=9 cases, by plotting each column as a function 
of age. For example, a unit increase in estimated 5f15 changes f* values at various ages by the 
height of the line labeled “15”. A unit increase in estimated 5f20 changes f* according to the 

8 For both of these cases, supplemental files at <http://calibrated-spline.schmert.net/REBEP> contain the calculated KW 
matrices for sample sizes W = 100, 1000, 10000, or 100,000. For the g=7 case, the 86x7 matrices of constants KW appear 
in comma-delimited supplemental files K7-100.csv … K7-100000.csv. For g=9 the corresponding 86x9 matrices appear in 
K9-100.csv… K9-100000.csv. Readers can adapt the supplemental programs to construct constants for other combinations 
of age grids, age groups, and average sample sizes.
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line labeled “20”, and so on. Note that the range of estimated fertility f* may extend beyond 
that spanned by the input data: in the g=7 case the procedure produces estimated ASFRs 
below age 15 and above age 50, based on known regularities in the age pattern of rates. 

Using Equation (14) or (15), basis functions in Graph 1 are multiplied by the observed 
y values and then summed to produce complete CS schedules over [α,β]. The top panel of 
Graph 2 illustrates the expansion of a set of g=7 five-year estimates into half-year intervals, 
using IDB data from Uruguay. The input data for Uruguay, based on national data, are: 

yURU = 10-3 x (49 116 135 99 54 16 2)’
United Nations data (UNSD, 2014) indicate that in 2002 there were approximately 

W=100,000 Uruguayan women in each five-year age group, so K100000 based on g=7 is the 
appropriate matrix to use.  

Multiplying the y values by the columns of K and summing, as in Equation (15), produces 
an 86x1 vector f*=Ky for rates at half-year intervals over 12-55, shown in the top panel. 

GRAPH 2 
Calibrated spline (CS) schedules for Uruguay 2002 (g=7, top panel) and Austria 1952 (g=9, bottom 

panel), estimated at half-year intervals over [12,55]
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Source: Schmertmann (2003: Supplemental, file III) for Uruguay; HFD (2012) for Austria. 
Note:  Input data y in both cases are five-year rates (per 1000 women) in the histograms. Both CS schedules are calculated using K100000 
multipliers. Large circles represent the averages of the CS fit over five-year intervals. Small dots in the bottom panel represent the original 
single-year data from Austria.
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The age-group averages for the CS model do not exactly replicate the input data. For 
example, the average of the CS schedule over ages 35-39 in Uruguay is .0536, slightly lower 
than the original 5f35 value of .0540. This occurs because minimizing the penalty index in 
Equation (11) requires tradeoffs between model fit and the shape of schedule. The tradeoff for 
Uruguay was typical, in the sense that over all 226 IDB schedules, Uruguay’s mean squared 
fitting error was closest to the median: half of IDB schedules have better CS fits to the 5fx 
data, and half have worse.   

The bottom panel of Graph 1 illustrates the CS schedule for Austria’s 1952 period 
fertility, calculated from g=9 five-year rates for age groups 10-14 through 50-54. There were 
approximately 250,000 women in each five-year age group in 1952 (HMD, 2014), so the 
calculation in the lower panel of Graph 2 also uses the K100000 multipliers. Austrian fertility 
rates for the nine five-year age groups were:

YAUT1952 = 10-3 x (.14 34 118 116 82 46 16 1 .02)’
In this case one can check the accuracy of the CS fit, because Austria 1952 is one of 586 

HFD schedules with 1fx values over x=12…54 that come directly from original data (rather 
than being interpolated from 5fx or other group averages). These original 1fx values appear 
as black dots in the lower panel of Graph 1, and it is clear that for this schedule the CS fit to 
the histogram matches the single year data well: the root mean squared error (RMSE) across 
all 43 ages is 0.0019. This is close to the seventy-fifth percentile of RMSE over the 586 
complete single-year schedules in the HFD. Thus the Austria 1952 fit to the single-year data 
in Graph 2 is actually worse than average: three-fourths of CS fits from five-year data match 
the original single-year schedule more accurately, while approximately one quarter of fits to 
HFD data are more accurate.9  

Graph 3 shows example fits to subnational data, for rural and urban residents of the 
Brazilian state of Rio de Janeiro. The plots use 2010 Demographic Census data (IBGE, 2010), 
downloaded as a five percent microdata sample from the IPUMS-International website 
(MPC, 2014). Solid dots in the graph represent single-year fertility rates 1fx, calculated from 
reported births in the previous year. These rates are quite noisy for rural residents, because 
unweighted sample sizes are modest. Over ages 10-54, the IPUMS sample for women in rural 
Rio de Janeiro contains a median of 202 records at a single year of age, and a median of 
1024 records in a five-year age group. In contrast, urban 1fx estimates are much less affected 
by sampling variability (median urban sample size is 4007 for single years, and 20,231 for 
the five-year groups).     

Graph 3 illustrates the need for smoothing 1fx estimates, especially in the rural case. The 
high volatility of 1fx over small age ranges is implausible, and clearly due more to sampling 
variability than to any real patterns in Brazilian fertility. 

9 99.7% of fitted single-year rates with the CS model are within .01 of the equivalent HFD data. The largest CS fitting error 
over the 586 complete single-year schedules is for 19-year-olds in the Czech Republic in 1991: true and fitted rates were 
.140 and .120, respectively.  This error arises because Czech 1991 rates had an unusually steep rise over ages 16-20, which 
the CS model does not replicate precisely.



299

Calibrated spline estimation of detailed fertility schedules from abridged dataSchmertmann, C.P.

R. bras. Est. Pop., Rio de Janeiro, v. 31, n.2, p. 291-307, jul./dez. 2014

However, Graph 3 also illustrates how the standard smoothing method (i.e., aggregating 
into five-year groups and treating the 5fx rates as constant within groups) obscures important 
details of the true age pattern. In particular, aggregating into 5fx hides a very steep rise in 
rates over ages 15-19, and steep declines over ages 30-34 and 35-39.  

The CS fit, which expands 5fx values into a historically plausible schedule over a fine grid 
of ages, represents a better compromise. The CS model smooths away much of the sampling 
noise, without loss of age detail. In this case, as in the Austrian data shown earlier, the CS 
model (calculated only from the heights of the histograms in each panel) does in fact represent 
the underlying single-year rates well.  

GRAPH 3 
Calibrated spline (CS) schedules for rural and urban residents of Rio de Janeiro State – 2010
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Source: MPC (2014). 
Note: . Data from IPUMS-I (2014) samples. In both cases y is the g=9 vector of five-year rates, for ages 10-14…50-54; these are plotted as 
histograms. Large circles represent the average of the CS schedule over a five-year interval. Small dots are single-year rates. Calculations 
for rural women use K1000 (based on median unweighted sample size W=1024); calculations for urban women use K10000 (based on 
W=20,231).

Comparative accuracy of CS vs. Beers interpolation

Researchers from Columbia University and the UN Population Division (LIU et al., 2011) 
recently used HFD data to compare the accuracy of several interpolation methods for fertility 
schedules. They concluded that the best overall method for recovering single-year age-specific 
rates from five-year averages was a variant10 of Beers’s ordinary osculatory interpolation 
method (SHRYOCK; SIEGEL, 1975, Table C3). 

Because the Beers interpolation approach was selected in an earlier “competition”, it 
is valuable to compare it to the CS approach over a wide range of schedules. Graph 4 offers 

10 The Beers method often generates negative rate estimates at ages <20 and 40+. In the Liu et al. (2011) variant, negative 
rates are replaced with exponential curves, which are then rescaled so that the five-year age group totals match the input data.
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an initial example for a single schedule, showing the interpolated fits from the two methods 
for Scotland in 2004, and a summary of the fitting errors. Scotland had more than 100,000 
women in each of the five-year age groups (NRS, 2014), so the CS fit in Graph 4 uses the 
K100000 multipliers.

GRAPH 4 
Alternative fits from the g=9 five-year rates for Scotland – 2004
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Source: HFD (2012). 
Note:. Open circles are interpolated 1fx values, in per 1000 terms. Solid dots are original single-year data from which five-year rates were 
calculated. Right panel illustrates cumulative sum of squared fitting errors over age. 

Several features of Graph 4 deserve mention. Both methods produce interpolated 
schedules that fit the single-year rates well. For the Scotland 2004 schedule the CS method 
is generally more accurate at ages below 30, and unlike the Beers approach it captures the 
subtle inflection in rates for the early 20s. The Beers model fits the single-year data better at 
ages 40+ (in part because extra adjustment that Liu et al. make for negative predicted rates 
at ages 48-52 with these input data). Overall, the CS errors are smaller.   

Moving from a single example to a global summary, Graph 5 summarizes the errors for 
the two methods over all 586 HFD schedules with known single-year rates, disaggregated 
by age. Notice:

• the vertical scale shows that average errors are very small for both methods; 
• the sawtooth pattern of errors at ages below 35 shows that both interpolation methods fit 

single-year data better in the middle of five-year intervals than they do at the edges. This 
is an arithmetical property of interpolation when the underlying curve is approximately 
linear over five-year intervals: both the fitted and true schedules are likely to be close to 
the age-group average at the center of the age range; 

• the pattern of comparative errors by age seen for Scotland 2004 in Graph 4 holds up across 
all schedules: calibrated spline fits are much better at ages below 40, while Beers fits (after 
fixing negative values) are slightly better at ages above 40; 

• most importantly, the total of average errors (all ages combined) is lower for the CS approach. 
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GRAPH 5 
Root mean squared fitting errors by age. Calculated over HFD cells with original (rather than estimated) 
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It is also useful to summarize errors over different dimensions. Graph 6 offers a second 
global comparison of the methods, this time aggregating over ages and showing the 
average RMSE by country. Average interpolation errors are lower for the CS method in all 
20 populations. Once again, both methods perform very well, but the CS method fits better 
than Beers. 

GRAPH 6 
Root mean squared fitting errors by country. Calculated over HFD cells with original (rather than 

estimated) single-year rates. Abbreviations from HFD
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Table 1 provides a final comparison of the methods, with slightly more quantitative detail 
about some of the potential problems that may occur when interpolating rates from abridged 
data. Section A of the table contain fitting errors (104) by age group and interpolation method, 
for (age, period, country) cells where the HFD’s 1fx values come from original data sources 
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rather than from a splitting algorithm. The CS method performs better overall, but at high 
maternal ages its fits are slightly worse than those of the adjusted Beers algorithm. 

Section B reports measures of the roughness or wiggliness of interpolated schedules, 
summarizing second differences by age (1fx+2 - 1fx+1) - (1fx+1 - 1fx) with root mean squared values 
(.104) across models fit to all 1480 HFD schedules (interpolation from g=9 age groups) and all 
226 IDB schedules (g=7). Lower index values in Section B correspond to sets of interpolated 
schedules with fewer up-and-down wiggles and fewer local maxima in the interpolated single-
year rates. Again the CS method performs better, producing smoother schedules.

Section C of Table 1 includes information on a performance criterion for which the CS 
method is inferior to the (adjusted) Beers approach: negative rate estimates. With the test 
data at hand, each method produces 1706x43=73358 single-year rate estimates. In the 
original Beers approach (not shown in the table) approximately 12% of the estimates are 
negative and 3% are below -.005. However, the Liu et al. variant used here eliminates all 
negative values through a post-processing algorithm. 

TABLE 1 
Error summaries for alternative interpolation methods

Beers Calibrated spline
A. Fitting errors (RMSE x 104)

All Ages 42 24
12-24 72 34
25-34 36 26
35+ 11 9

B. Roughness of fitted schedule
(root mean squared 2nd 
difference x 104)

HFD (g=9) 76 38
IDB (g=7) 61 43

C. Negative values 
(percent of all estimated rates)

< 0       0 2.7
< -.0005 0 0.4
< -.0050 0   0.0+

Source: HFD (2012)  and Schmertmann (2003: Supplemental File III). 
Note: RMSEs calculated over cells with known single-year data. All other calculations refer to interpolated fits over ages 12-54 from all 1706 
available 5fx schedules (1480 in HFD + 226 in IDB).  Shaded cells correspond to the best- performing method for each error criterion.

In contrast, without adjustment 2.7% of the CS-estimated fertility rates are negative. 
Although this is of course logically impossible, the vast majority of these negative CS rate 
estimates are negligibly different from zero. As seen in Section C, only 0.4% of CS rates are 
below -.0005 (i.e., negative after rounding to three decimal places). In practice, CS estimates 
are sufficiently close to zero that their direct use in calculations such as TFR, mean age of 
childbearing, etc. would cause no meaningful problems. 

Small negative estimates are a minor problem for the CS method, small enough that I 
have not applied any post-processing to the CS rates in any of this paper’s tables or graphs. 
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However, it is possible to use a very simple post-processing procedure on CS rates – namely, 
after calculating f*=KW y, replace any negative values with zeroes. This is computationally 
much simpler than the Liu et al. (2011) post-processing algorithm for Beers rates, and it 
would not alter any of the values in Sections A or B of Table 1.11

In sum, both methods are very good, but the CS method performs slightly better – over all 
HFD countries, and over the ages at which fertility rates are highest. Interpolated CS schedules 
are smoother and fit known data better. CS calculation is also much simpler than the Beers 
variant used by Liu et al. (2011), because it does not require complex adjustments for edge 
effects and negative values. 

Discussion

I have presented applications of the calibrated spline model for only two specific cases, 
but the general framework is extremely flexible. In principle one can construct expansion 
constants K that map input data from any set of age groups onto any fine grid of ages. The 
input age groups may be incomplete (e.g., {25-29,35-39,40-44,45-54}), irregularly spaced 
({12-14,15-19,20-24,25-34,…}), or even overlapping ({15-17,15-24,…}).12  

The CS model fits observed schedules well, outperforming an alternative method that 
has done well in earlier research. It is also much simpler to estimate. Given the K constants 
(which in most cases are the ones already provided in this paper and the accompanying 
data files), fitting a detailed ASFR schedule requires only basic arithmetic. Unlike the Beers 
method and other generic polynomial fitting methods that are not designed specifically for 
fertility estimation, post-estimation tweaks for negative fitted rates at the highest and lowest 
maternal ages are rarely necessary. 

Although not explicitly Bayesian, the CS estimation approach makes heavy use of a priori 
information. The penalized least squares criterion gives priority to fertility schedules that not 
only fit input data well, but that also match historical or contemporary patterns seen in large 
databases. The technique of identifying such patterns through singular value decomposition 
of a large data array is not new in demography (for example, it is the basis of the Lee-Carter 
[1992] mortality model), but to my knowledge researchers have not previously used such 
patterns in a simple, least-squares method like that presented here.
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Resumo
Estimadores splines calibrados: estimativas de taxas detalhadas de fecundidade a partir de 
dados agrupados por idade

É desenvolvido e explicado um novo método para a interpolação de estruturas etárias detalhadas de 
fecundidade, a partir de dados agrupados por idade. O método permite a estimativa das taxas específicas 
de fecundidade para qualquer idade detalhada, desde as diferentes faixas etárias padrão até qualquer 
agrupamento não usualmente utilizado. O novo método, chamado de estimador spline calibrado 
(CS), expande as taxas de fecundidade agrupadas por idade encontrando uma curva suavizada, por 
minimização dos erros quadrados penalizados. A penalidade é baseada tanto no ajuste aos dados dos 
grupos etários disponíveis, quanto na semelhança dos padrões das estruturas etárias 1fx observadas 
no Banco Human Fertility Database (HFD) e no US Census International Database (IDB). O estimador 
CS foi comparado a um bom método alternativo que requer mais computação: interpolação de Beers. 
Os resultados mostram que o CS replica as conhecidas estruturas etárias de fecundidade, 1fx, a partir 
das 5fx melhoradas, sendo que as estruturas etárias da fecundidade interpoladas apresentam-se 
também mais suavizadas. A conclusão é que o CS constitui um método facilmente calculado, flexível 
e preciso para a interpolação de estruturas de fecundidade detalhadas a partir de dados agrupados. 
Os usuários podem calcular estruturas específicas de fecundidade detalhadas diretamente por meio 
dos dados observados, usando apenas aritmética elementar.

Palavras-chave: Fecundidade. Interpolação. Splines. Mínimos quadrados penalizados.

Resumen
Estimadores spline calibrados para tasas detalladas de fecundidad a partir de datos 
agrupados por edad

Se desarrolla y explica un nuevo método para la interpolación de estructuras etarias detalladas de 
fecundidad a partir de datos agrupados por edad. El método permite la estimación de las tasas 
específicas de fecundidad para cualquier edad detallada, desde los diferentes segmentos etarios 
estándar hasta cualquier agrupamiento no utilizado usualmente. El nuevo método, llamado estimador 
spline calibrado (CS), expande las tasas de fecundidad agrupadas por edad encontrando una curva 
suavizada mediante la minimización de los errores cuadrados penalizados. La penalización se 
basa tanto en el ajuste de los datos de los grupos etarios disponibles como en la semejanza de los 
patrones de las estructuras de edad 1fx observados en la Human Fertility Database (HFD) y la US 
Census International Database (IDB). El estimador CS se comparó con un buen método alternativo que 
requiere más procesamiento: la interpolación de Beers. Los resultados muestran que el CS replica las 
conocidas estructuras etarias de fecundidad 1fx, a partir de las 5fx mejoradas, donde las estructuras 
etarias de la fecundidad interpoladas también se presentan más suavizadas. La conclusión a la que 
se arriba es que el CS constituye un método fácil de calcular, flexible y preciso para la interpolación 
de estructuras de fecundidad detalladas a partir de datos agrupados. Los usuarios pueden calcular 
estructuras específicas de fecundidad detalladas directamente por medio de los datos observados, 
solo utilizando la aritmética elemental.

Palabras clave: Fecundidad. Interpolación. Splines. Mínimos cuadrados penalizados.
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Appendix: Moment calculations from age group data

One possible use of the empirical model is estimation of moments of the continuous 
fertility schedule from grouped data. This type of approximation might be especially useful 
with indirect methods. 

Begin by defining the function:
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Where QW and RW are defined as in equations (12) and (13), and cn(x) is therefore a g x 1 
vector of known constants. 

With different (x,n) combinations, Equation (A2) produces different moments of the 
fertility function. Table A1 shows some of the calculated constants for the g=7 case; a more 
complete set of constants, calculated using the suggested default of W=1000, is available 
in supplemental file Cdata.csv. 

By definition Q0(∞) is a schedule’s total fertility (TFR), and Q1(∞)/Q0(∞) is its mean age 
of childbearing μ. In the case of the Uruguay 2002 data shown earlier, for example, we can 
approximate these quantities as:

TFR = Q0(∞)  ≈ 3.44(.049) + … + 0.66(.002) = 2.328
μ = Q1(∞) / Q0(∞) ≈ [60.78(.049) + … + 27.15(.002)] / 2.328 =  28.23
Similarly, one can approximate conditional moments such as average parity of women 

30-34 [Q0(32.5)] and the average age at which they had their previous births [Q1(32.5)/ 
[Q0(32.5)].  With the Uruguay data these moments would be:

P30-34 ≈ Q0(32.5)  ≈ 3.51(.049) + … -0.03 (.002) = 1.753
μ30-34 ≈ Q1(32.5) / Q0(32.5) ≈ [63.46(.049) + … -1.53(.002)] / 1.753 =  25.37
Calculations like this can be important for time allocation with indirect methods. For 

example, from the five-year rate schedule for Uruguay, moment approximations imply that 
with a cohort fertility schedule with this shape, women 30-34 interviewed in a survey would 
have had their births an average of 32.50-25.36 = 7.14 years earlier.  
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TABLE 1 
Some c multipliers for the g=7 case

15-19 20-24 25-29 30-34 35-39 40-44 45-49
n=0 (TFR)

       x = 17.5 1.06 -0.09 -0.03 0.08 0.02 0.15 0.08
       x = 22.5 3.78 3.12 -0.53 -0.02 -0.07 -0.06 0.02
       x = 27.5 3.48 5.86 2.37 -0.19 -0.18 0.01 0.01
       x = 32.5 3.51 5.49 5.12 2.58 0.06 -0.38 -0.03
       x = 37.5 3.53 5.31 5.32 4.91 2.23 0.53 0.09
       x = 42.5 3.40 5.43 4.97 5.32 4.63 2.55 0.40
       x = 47.5 3.44 5.38 4.84 5.34 5.45 3.53 0.63
       x = ∞ 3.44 5.38 4.83 5.34 5.48 3.57 0.66
n=1 (TFR ∙ μ)

       x = 17.5 17.12 -1.44 -0.39 1.29 0.23 2.28 1.18
       x = 22.5 70.24 65.04 -10.41 -0.98 -1.43 -1.84 0.07
       x = 27.5 62.45 131.62 63.76 -4.59 -4.38 -0.36 -0.21
       x = 32.5 63.46 120.12 144.93 79.44 3.43 -11.92 -1.53
       x = 37.5 64.12 114.23 151.35 160.02 79.96 20.88 2.89
       x = 42.5 59.04 118.92 137.37 176.23 175.54 101.65 15.51
       x = 47.5 60.70 116.70 131.64 177.09 211.81 145.18 25.68
       x = ∞ 60.78 116.63 131.32 177.13 213.45 147.07 27.15
Source: Author’s calculations based on Equation (A2).
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