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High variability in recorded vital events creates serious problems for small-area mortality 
estimation by age and sex. Many existing approaches to fitting local mortality schedules, 
including those most often used in Brazil, estimate rates by making rigid mathematical 
assumptions about local age patterns. Such methods assume that all areas within a larger 
area (for example, microregions within a mesoregion) have identically-shaped log mortality 
schedules by age. We propose a more flexible statistical estimation method that combines 
Poisson regression with the TOPALS relational model (DE BEER, 2012). We use the new method to 
estimate age-specific mortality rates in Brazilian small areas (states, mesoregions, microregions, 
and municipalities) in 2010. Results for Minas Gerais show notable differences in the age patterns 
of mortality between adjacent small areas, demonstrating the advantages of using a flexible 
functional form in regression models.
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Introduction

Approaches to small-area mortality estimation

Reliable estimates of levels, age patterns, and sex differences in small-area mortality 
are important for evaluating and targeting public investment. However, the combination 
of low risk and small populations can make small-area estimation a difficult task. Under 
those circumstances, observed event/exposure rates are often unstable across ages and 
times, and estimation of underlying mortality patterns is difficult (RIGGAN et al., 1991; 
BERNADINELLI; MONTOMOLI, 1992; PLETCHER, 1999; THATCHER et al., 2002; ASSUNÇÃO 
et al., 2005; DIVINO; EGIDI; SALVATORE, 2009).

For countries with good vital registration systems and annual population updates, 
researchers have recently made important advances in statistical modeling and estimation 
of complete mortality schedules in small areas (TOSON; BAKER, 2003; EAYRES; WILLIAMS, 
2004; BRAVO; MALTA, 2010). The most sophisticated new approaches use Bayesian models 
to estimate small-area mortality rates and life expectancies (and their uncertainty) by 
“borrowing strength” over ages, sexes, times, and/or places. Demographers have played a 
role in developing Bayesian models (MCKINNON, 2010; TSIMBOS et al., 2014; ALEXANDER et 
al., 2016), but much of the progress in estimating small-area mortality schedules has been 
made by statistical epidemiologists (CONGDON, 2009; OCAÑA-RIOLA; MAYORAL-CORTÉS, 
2010; JONKER et al., 2012; STEPHENS et al., 2013).

Studies of complete age- and sex-specific mortality schedules at subnational levels are 
rare in developing countries. There is a voluminous and well-known demographic literature 
on estimating partial mortality schedules (especially infant and child mortality indicators) 
in developing countries. Many classic methods rely on indirect information from surveys 
or censuses, rather than direct information from vital registration (e.g., BRASS; COALE, 
1968; SULLIVAN, 1972; FEENEY, 1980; UNITED NATIONS, 1983; HILL, 1991; MOULTRIE et 
al., 2013). When applied to census data, classic indirect methods and their modern variants 
can produce useful child mortality indicators for small subnational areas e.g., Rajaratnam 
et al. (2010) for Mexico; UNDP (2013) for Brazil.  

Researchers have also explored new methods for estimating small-area mortality and 
life expectancy for Brazil. McKinnon (2010) used Bayesian spatial smoothing to produce 
municipal-level estimates of child mortality (5q0) from the 2000 census. Freire et al. 
(2015) combined formal demographic methods for estimating vital registration coverage 
with Empirical Bayes spatial smoothing. They estimated complete life tables by sex at the 
municipal level for 2010 from vital registration data, using indirect standardization of 
municipal rates based on mesoregional schedules. Lima et al. (2016) recently experimented 
with a variety of Poisson regression models, some with intra-state spatial smoothing of 
mortality rates, for estimating municipal-level life expectancy from vital registration data 
in the states of São Paulo and Maranhão. 
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Despite these advances, accurate estimation of age-specific rates for subnational 
populations in developing countries remains a challenge for demographers and public 
health researchers (HORTA et al., 1998; JUSTINO; FREIRE; LUCIO, 2012; UNDP, 2013; LIMA; 
QUEIROZ; SAWYER, 2014; FREIRE et al., 2014; LIMA; QUEIROZ, 2014). In particular, there 
is still value in developing robust estimation methods for complete mortality schedules, 
which could then serve as building blocks for more complex models.

Indirect standardization for sparse data

Indirect standardization (IS) is a common method for dealing with sparse data for small 
populations. IS assumes a specific pattern of relative mortality by age, and estimates only 
the level of local mortality from local, age-specific death and exposure data. The assumed 
age pattern for a small area is usually the empirical pattern observed in a larger geographic 
aggregate, such as the state to which the small area belongs.

Researchers in Brazil and elsewhere have used IS in two different ways, depending 
on the quality of vital records. For small areas in regions with reliable death registration, 
researchers have applied IS smoothing to estimate mortality rates directly (CURTIN; KLEIN, 
1995; UNDP, 2013; RAM et al., 2015). Death registration is incomplete in many regions of 
Brazil, however (VASCONCELOS, 1998; PAES; ALBUQUERQUE, 1999; SZWARCWALD et al., 
2002; MELO-JORGE; LAURENTI; GOTLIEB, 2007; LIMA; QUEIROZ, 2011; JUSTINO; FREIRE; 
LUCIO, 2012; FRIAS et al., 2013; LIMA; QUEIROZ; SAWYER, 2014; LIMA; QUEIROZ, 2014). In 
regions with problematic vital records, IS smoothing produces estimates of (uncorrected) 
mortality schedules, which then serve as inputs to procedures that estimate the degree and 
age pattern of under-registration (e.g., HORTA et al., 1998; UNDP, 2013; QUEIROZ et al., 
2013; LIMA QUEIROZ; SAWYER, 2014; FREIRE et al., 2014; FREIRE et al., 2015). In both cases, 
the quality of mortality estimates depends on the fundamental IS assumption – namely, 
that a specific pattern of relative mortality rates by age is correct. In most applications of 
IS to small areas, this requires that mortality age patterns must be identical in a larger 
region (such as a state) and in each of its component subregions (such as microregions 
or municipalities). 

In this paper we propose an alternative to IS that allows estimation of small-area 
schedules without imposing strong assumptions about the age pattern of mortality rates. 
Like IS, the new method can be used two ways: (1) to estimate complete schedule of log 
mortality rates in areas where the vital registration coverage is complete, or (2) to smooth 
reported death rates in areas with defective vital registration before applying undercount 
adjustments. 

Poisson regression with a TOPALS relational model

We propose a Poisson regression method based on TOPALS, a relational model 
developed by De Beer (2012) for smoothing and projecting age-specific probabilities 
of death. Like all relational models (e.g. BRASS, 1971; MURRAY et al., 2003; WILMOTH 
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et al., 2012), TOPALS builds complete schedules of age-specific rates via mathematical 
adjustments to a specified standard schedule. Our version of TOPALS constructs a fitted 
schedule of log mortality rates at ages 0…99 by adding a linear spline function with seven 
parameters (α0 ... α1) to a pre-specified standard schedule. We estimate parameters by 
maximizing a penalized Poisson likelihood function for age-specific deaths, conditional 
on age-specific exposure. 

To our knowledge, demographers have not previously used TOPALS in regression 
models. Although relational models can be sensitive to the choice of the baseline schedule, 
we demonstrate that TOPALS regression results are extremely insensitive to the choice of 
the standard.

As a relational model with multiple, age-specific parameters, TOPALS is flexible enough 
to “bend” a standard schedule into a variety of alternative shapes.  This flexibility can be 
important when age-specific mortality patterns vary across small areas within a larger region.

Mortality patterns differ significantly across large regions in Brazil (AGOSTINHO, 
2009), but it is less clear what happens in small areas. Even adjacent regions can vary in 
the stage of epidemiological transition, and in levels of urbanization, development, and 
public investment. Consequently, they can also differ in age-specific mortality by cause 
of death, and in age patterns of all-cause mortality (PRATA, 1992; BARRETO et al., 1993; 
SCHRAMM et al., 2004; BARRETO; CARMO, 2007; ARAÚJO, 2012). In these circumstances, 
applying IS to estimate mortality rates before applying undercount adjustments could hide 
important differences between areas’ underlying mortality patterns – especially for males 
and for some specific causes of death.

The method that we present in this paper, TOPALS regression, offers at least three 
advantages over IS. First, rather than using multi-year age groups and a maximum age of 
60 or 70, the new approach uses data for single years of age 0, 1, 2, ..., 99, even when 
the corresponding risk populations are very small. Second, Poisson regression allows 
appropriate use of the “zero” cells for specific ages and age groups in which there are no 
recorded deaths. Finally, and most importantly, our method does not assume a fixed age 
pattern of mortality rates in advance. Based on the empirical tests that we report in the paper 
and in the supplementary material on our project website, we conclude that the TOPALS 
method works well, even for areas with small populations and zero deaths at many ages.

In the text of this paper, we present only regression results for small areas of Brazil 
in which vital registration is nearly complete. In these cases TOPALS estimates may be 
interpreted directly as estimates of local mortality rates. On a supplementary website1 we 
report regression results for all small areas of Brazil (all states, mesoregions, microregions, 
and municipalities). We strongly caution readers that many regression estimates on the 
website correspond to areas with incomplete vital registration. In such areas, TOPALS 
estimates, like IS estimates, still require adjustment for under-reporting of deaths. 

1 Available at <http://topals-mortality.schmert.net>.
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Data and methods

Data

Population and deaths by sex and single-year ages, from 0 to 99, come from the 
Demographic Census (2010) and from the Ministry of Health’s Mortality Information System 
(SIM/Datasus), respectively. Both types of data were collected at municipal level and then 
aggregated to microregions, mesoregions, and state levels, as defined by the Brazilian 
National Statistics Office (IBGE).

We used IBGE’s automated retrieval system (SIDRA)2 and TabWin software available 
on the Datasus website3 to collect data on population and deaths, respectively, for 5565 
municipalities, 100 single-year ages, and 2 sexes. We recorded the 2010 census population, 
the number of deaths over calendar years 2009-2011, and geographic identifiers for 
each of the 1,113,000 combinations of (municipality, age, sex). We used the 2010 
census populations to estimate age- and sex-specific exposure over 2009-2011.4 Despite 
using three years of exposure, almost half (49.2%) of the (municipality, age, sex) cells 
have no recorded deaths. The complete dataset is available for other researchers in the 
supplementary material on our project website.

Poisson regression with TOPALS

Several statistical models smooth mortality rates or probabilities using spline functions 
(MACNAB; DEAN, 2001; CURRIE; DURBAN; EILERS, 2004; DE BEER, 2012; CAMARDA, 2012). 
De Beer (2012)’s TOPALS model uses a linear spline to model the pattern of ratios between 
age-specific probabilities of death in a population and the corresponding probabilities in 
a standard schedule.

Our variant of TOPALS also uses a standard schedule and a linear spline offset. However, 
we use the spline to represent additive offsets on the log mortality rate scale, rather than 
multiplicative offsets on the probability scale. Specifically, we assume that the schedule 
of log mortality rates over ages 0…99 is the sum of a standard schedule λ* ∈ R100 and a 
linear spline function:

100
λ α λ α= + B( )

x x x x1 100 1

*
100 7 7 1              

(1)

where λ is a vector of log rates in a small area; λ* is a standard schedule,5 B is a matrix 
of  constants in which each column is a linear B-spline basis function (DE BOOR, 1978; 

2 <http://www.sidra.ibge.gov.br>.
3 <http://www.datasus.gov.br>.
4 Details of this method are included on our project website. For all but the smallest areas, estimated exposure for a given 
age and sex is very close to three times the 2010 population at that age and sex.
5 The vector of mean sex- and age-specific log rates in the Human Mortality Database (HMD, 2015) over all schedules 
observed in any country after 1969.
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EILERS; MARX, 1996),6 and α is a vector of parameters representing offsets to the standard 
schedule. We define knots at ages t0,…,t6 = (0, 1, 10, 20, 40, 70, 100). For ages x in {0, 1, 
2, ..., 99} and columns k in {0,...,6} the basis functions in B are:
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With this parameterization, α values represent additive offsets ( *
xx λλ − ) to the log rate 

schedule at exact ages (0, 1, 10, 20, 40, 70, 100) and offsets change linearly with age 
between those knots. 

For any set of observed age-specific deaths and populations {Dx, Nx}x=0…99, we assume 
that deaths are distributed as independent Poisson variables, Dx ~ Pois [Nx exp(λx)], so 
that the log likelihood is:

onstant ∑α λ α λ α= + − L D Nlog ( ) c ( ) exp( ( ))
x

x x x x
                       

 (3)

In order to avoid implausible fitted schedules for very small populations with very low 
numbers of deaths, we add a penalty term to the log likelihood that increases as the linear 
spline offsets become less smooth (EILERS; MARX, 1996). After omitting the constant (which 
does not affect the fit), the penalized log likelihood is:7

∑ ∑α λ α λ α α α= −  − −+
=

Q D N( ) ( ) exp( ( )) ( )
x

x x x x k k
k

1
2

0

5

          
                    (4)

The penalty term has virtually no effect on the fit for areas with moderate to large numbers 
of deaths Dx and exposure Nx, but it stabilizes estimates in the smallest municipalities. 

The estimated mortality schedule for an area is λ α+B ˆ* , where α̂  is the value that 
maximizes the penalized likelihood Q. This objective function is non-linear in α, but standard 
software (such as R’s optim function or the solver add-in in Microsoft Excel) can easily find 
the offsets α that maximize the penalized log likelihood.8

Graph 1 provides an example regression fit, for females in the Pará de Minas microregion 
(IBGE code 31029), which is part of the Belo Horizonte metropolitan mesoregion (code 
3107). This microregion had a 2010 female population of 62,248, with 891 female deaths 
recorded over 2009-2011. The graph shows the logarithms of deaths/(estimated exposure) 
at each single year of age as circles, and illustrates the fit to the (Dx, Nx) data with offsets 

6 B-splines are only one of many possible methods for constructing linear spline basis functions. De Beer (2012) uses a 
different parameterization for linear splines, for example, but the columns spaces of his B matrix and ours are identical. 
B-splines have an advantage in regression problems, because the columns of the basis function are less collinear and 
parameter estimators have lower covariances. B-spline coefficients are also especially easy to interpret, because they 
represent the values of the spline at the knots. 
7 The penalty term has a Bayesian interpretation: Q(α) is the posterior log likelihood that arises when using an improper 
prior distribution (αk+1 – αk) ~ N(0, ½) with the Poisson likelihood. The penalty term is also related to the IS estimator 

γ xλ λ= + ∀x x
*  . In this second sense, IS is a special case of TOPALS, in which the penalty for differences in consecutive α 

terms is infinite and all age-specific offsets α0 = α1 = ... = α6 (= γ) must be identical. 
8 In the supplementary material for this paper (http://topals-mortality.schmert.net) we include an example spreadsheet, 
Pará de Minas.xlsx, that illustrates how to use Excel’s solver. The R programs on the site use the optim function. 
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α that maximize the likelihood function in Equation (4). Several features of the plot merit 
attention:

• Regression estimates produce the smooth schedule (λ*+ Bα) represented by the 
thick line. This fitted schedule has a plausible age pattern because it is based on an 
observed standard, but it is appropriately adjusted to local levels and age patterns 
of mortality via the choice of offsets α.

• A non-linear Poisson regression approach allows estimates of the entire schedule 
of single-year rates, even when there are no deaths at some ages. For Pará de Minas 
females 2009-2011, fourteen single-year ages had Dx=0 (see figure caption), and 
there was one five-year group (10-14 year olds) with no recorded deaths.

• Because the regression method borrows information from both the standard and the 
local rates at younger ages, it is possible to extend rate estimates for small areas to 
single-year ages above 80.

GRAPH 1 
Maximum likelihood TOPALS fit of log mortality by age, females 

Pará de Minas microregion – 2010

Source: Human Mortality Database (2015) and IBGE (2010) and Ministry of Health (http://www.datasus.gov.br). 
Note: Open circles represent ln(Dx, Nx) for each single year of age. Tick marks on the horizontal axis represent 14 ages with 
no reported female deaths (2,4,6-14,17,19 and 27). The thin solid curve is the standard schedule λx

*. Segmented line at the top 
represents age-specific offsets from the standard (λx –  λx

* ); heights of the solid points are equal to maximum likelihood estimates 
for α. Final fitted schedule λx equals standard schedule plus estimated offset. Shaded bands represent 95% pointwise confidence 
intervals for linear spline offsets and for log mortality schedule λx.
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• A Poisson regression approach allows calculation of standard errors for the estima-
ted spline offsets and the corresponding standard errors in estimated log mortality 
rates. Pointwise 95% confidence intervals (discussed in more detail in section 2.4) 
appear as the light bands in Graph 1.

• As demonstrated in the next subsection, the shape of the final estimated schedule 
is extremely insensitive to the choice of standard. Because the approach allows di-
fferent offsets at different ages, almost any choice of standard will produce a fitted 
schedule very similar to the thick line labeled TOPALS when applied to this data set.

Insensitivity to choice of standard

Selection of an appropriate standard can be a big challenge when using a relational 
model. One major advantage of our regression approach is that the estimated mortality 
rates change very little with different choices for the standard λ*, so that demographers 
can use almost any schedule as a starting point. 

To illustrate the (in)sensitivity of our proposed method, we estimated mortality rates for 
Brazilian areas using seven extremely different standards, based on average log mortality 
rates over alternative subsets of the HMD (2015): lifetables from (1) all countries, (2) Chile, 
(3) Sweden, (4) France, (5) Eastern European countries, (6) Anglophone countries, and (7) 
Asian countries. 

The top left panel of Graph 2 shows the seven different standards. The other three 
panels of Graph 2 present Poisson regression estimates of male mortality rates using 
each of the seven standards for three municipalities with very different population sizes in 
2010: Ribeirão Preto - SP (6,186 deaths over 2009-2011, with a 2010 census population 
of 290,165 males), Itajubá - MG (1,008 deaths, 44,489 males), and Fernando de Noronha 
(12 deaths, 1,292 males). 

In all areas, the mortality pattern estimated by the regression model is very similar 
for all seven choices of standard schedule, and goodness of fit is almost identical. In 
order to compare fits, we calculate the deviance-based R2 measure for Poisson regression 
models proposed by Cameron and Windmeijer (1996, p. 211).9 Each standard s produces 
a different fitted model and therefore a different goodness of fit Rs

2 to the observed deaths 
and exposure.   

Ribeirão Preto (top right panel) had at least one male death over 2009-2011 at every 
single-year age except 9, and three years of exposure is sufficient to generate a regular 
pattern in age-specific rates even before smoothing (open circles). Regardless of the 
choice of standard, a TOPALS regression model reproduces the observed pattern well. 
All standards yield similar goodness of fit. Rounded to three decimal places, the seven 
Cameron-Widmeijer Rs

2 values for s ∈ {All_HMD ...Asian} all equal 0.999, indicating very 
good and extremely similar fits.
9 In our model this measure is D Dx x x x( ) ( )

( )
= −

∑ −

∑
R D D D

D D D
1

In / −

In /
DEV P

x x

x x x x

,
2 ˆ ˆ , where  ( )λ= exp ˆD Nˆ

x xx
, = ∑ ∑) / ( )D D N( x x x x ,  

and by convention 0·ln(0)≡0.
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In a municipality with a moderate-sized population, such as Itajubá in the bottom left 
panel, directly observed rates (open circles) are noisier and there are more ages at which 
no deaths are recorded. In this case regression smoothing is more necessary, but again 
the choice of standard has only minor effects on the fitted rates: estimated schedules are 
very similar for all eight standards. Rs

2 for  s ∈ {All_HMD ...Asian} all round to 0.993, again 
indicating very similar fits.

GRAPH 2 
Seven alternative standard schedules and corresponding estimated male mortality rates (log mx) by age 

for three municipalities with different population sizes 
Ribeirão Preto, Itajubá and Fernando de Noronha – 2010

Source: IBGE (2010) and Ministry of Health (http://www.datasus.gov.br).

Finally, the bottom right panel shows regression results for an extreme case with a 
very small municipal population. Fernando de Noronha had only twelve recorded deaths for 
males over 2009-2011 (one infant death, one death each at ages 27, 29, 35, 52, 60, 65, 66, 
76, and 83, and two deaths at age 48). The male resident population was also zero at many 
ages above 75 and at all ages 91-100. Remarkably, TOPALS regression produces reasonable 
(although highly uncertain) estimated mortality schedules, even in this case where mortality 
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and exposure data is very sparse. As in the other panels, the fitted schedules are similar for 
all choices of standard, although with only twelve observed deaths fits are of course slightly 
less stable. Rs

2 values for s ∈ {All_HMD ...Asian} are (.689, .686, .676, .673, .681, .678, .670). 

Calculation of standard errors

A nonlinear regression approach to estimating the linear spline offsets α allows 
approximation of standard errors for α and λ terms. From standard nonlinear regression 
analysis (e.g. RUUD 2000, p. 327), the 7x7 covariance matrix of offset estimators α̂  is 
approximately equal to the negative of the inverse Hessian matrix of second derivatives 
of Q(α) from equation (4): α α

α α
≈ − ∂

∂ ∂







−
V Qˆ ˆ

'
2 1






(   )(   )  . In the TOPALS model the negative of the 

Hessian is

  

α

α α
α

( ) ( )−
∂

∂ ∂












= ∑ 



 +

Q
D b b

ˆ

'
ˆ ˆ 2Δx x x x

2
'

                                              
(5)

where = λ αD N eˆ
x x

( ˆ )x is the number of deaths at age x predicted by the fitted model, bx is a 
7x1 column vector containing the (transposed) row of the spline matrix B that corresponds 
to age x, and Δ is a 7x7 matrix of differencing constants related to the penalty term in 
equation (4).10, 11 Inverting this matrix produces an estimate of the 7x7 covariance matrix 

αV ( ˆ) , which in turn produces a 100x100 covariance matrix for estimated log mortality rates:

λ λ α α( )( ) ( )= + =V V B BV Bˆ ˆ ˆ '*

                  
(6)

The square roots of the diagonal of λ( )V ˆ  are the estimated pointwise standard errors 
for log mortality rates at ages 0…99. 

Graph 1 includes example uncertainty estimates for the Pará de Minas female schedule. 
At each age, bands at (estimates ±1.96 standard errors) illustrate 95% confidence intervals 
for both the spline offsets and the log rates. Analogous calculations are possible for any 
TOPALS regression estimates. Equation (5) shows that uncertainty about log mortality 
rates will be high when there are few expected local deaths around the age of interest. 
Standard errors are therefore large when age-specific populations are small (as in a small 
municipality) and when mortality rates are very low (as at ages 5-15). 

Estimation errors for TOPALS and IS with simulated data

The evaluations in the previous subsections use real data in cases for which true 
mortality rates are unknown. It is also important to evaluate TOPALS regression in 
simulations with known rates in order to understand the method’s statistical performance 
– particularly in comparison with IS. 

10 Δ is 7x7 with (1,2,2,2,2,2,1) on the main diagonal, -1 in every element of the first subdiagonal and first superdiagonal, 
and zero everywhere else. 
11 R calculates the Hessian automatically if the optim function includes the argument hessian=TRUE.
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For this purpose, we compared TOPALS regression and IS by generating thousands of Monte 
Carlo samples of different sizes from a known mortality schedule (the national μx schedule 
for Brazilian males in 2010). Every sample in our simulations had a predetermined number of 
individuals Nx at each single year of age, and a random number of deaths Dx~Poisson(Nx μx). 

We calculated two TOPALS regression fits from each sample – one using a standard 
schedule with an incorrect shape (the all-HMD average used earlier), and another using a 
standard with the correct shape (the μx values that actually generated the data). We also 
calculated two IS estimates for each sample, using both the HMD standard (incorrect shape) 
and the true Brazilian schedule (correct shape).12 

The main questions for the Monte Carlo exercise are (1) Do typical errors approach zero 
as sample sizes increase? and (2) Does using an incorrect standard cause significant bias? 
The second question is particularly important for IS estimates in small areas, because the 
mortality schedule for a subregion may not have the same shape as the schedule for the 
larger region in which it resides. In that case, estimating the subregional schedule using 
the (locally incorrect) shape of the regional schedule could produce large errors.

Complete Monte Carlo results are available in the supplemental files on the project 
website. Here we briefly summarize by reporting mean absolute errors (MAE) in estimated 
log mortality rates and in estimated life expectancy over samples with different estimators 
and small-area sample sizes (Table 1). 

TABLE 1 
Mean absolute errors of log mortality rates and estimated life expectancy, with alternative methods, 

standards, and sample sizes

Nx
With correct standard With incorrect standard

IS TOPALS IS TOPALS

|ln μx̂ – ln μx| over all ages and samples
1 .415 .417 .733 .692
100 .040 .142 .539 .187
10000 .004 .028 .538 .057
|ê0  – e0| over all samples
1 4.79 4.94 6.31 6.10
100 0.52 1.29 5.54 1.43
10000 0.05 0.15 5.54 0.15

Source: Simulated data as described in text. 
Note: IS=indirect standardization, Nx=number of individuals at each single-year age

TOPALS regression, which is able to “bend” any standard mortality schedule via age-
specific offsets, performs similarly, regardless of the chosen standard. At extremely small 
sample sizes (such as Nx=1, which would correspond to total local population of only 100 
people), TOPALS errors are fairly large,13 but they quickly become small as sample sizes 

12 In our notation, IS may be expressed as λ λ γ= + ˆx x
* , where ( )



λ∑ ∑γ = D N/ exp ( )ˆ In

x x x x x
*  is the logarithm of (observed 

deaths)/(expected deaths). IS shifts a standard schedule of log rates up or down, by the same amount at each age. 
13 For all methods, in very small samples the reported errors are almost entirely caused by underestimates of mortality rates 
and overestimates of e0.  Scherbov and Ediev (2011) show that this bias is a mathematical feature of small-sample estimates.
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increase (Table 1). This occurs for almost any chosen standard, as comparison of the last 
two columns in Table 1 suggests. 

In contrast, the performance of IS depends critically on the chosen shape of the standard 
mortality schedule. If the standard shape is correct (first columns of table 1), then errors 
are smaller than TOPALS errors and decrease similarly with sample size. However, if the 
chosen standard schedule does not match the true schedule’s shape (last columns of table 
1), then IS can exhibit strong bias even as sample sizes become very large. 

We conclude from the simulations that IS is slightly better than TOPALS when the shape 
of the local mortality schedule matches the assumed standard. (This makes statistical 
sense: when a strong mathematical assumption about the exact shape of the mortality 
schedule is correct, then adding extra parametric flexibility via TOPALS can only increase 
the variance of mortality estimates). However, TOPALS decisively outperforms IS when the 
shape of the local mortality schedule differs from the standard. 

The underlying mortality pattern in Brazilian small areas

A flexible regression model like TOPALS is valuable when regional and subregional age 
patterns of mortality differ. We now return to contemporary Brazilian data to investigate 
whether that situation is common.

We illustrate intra-state differentials in underlying mortality patterns with results from 
the state of Minas Gerais and some of its subregions. We chose Minas Gerais as an example 
because its vital registration is very complete (LIMA; QUEIROZ, 2011; LIMA; QUEIROZ; 
SAWYER, 2014), and because it is a state with heterogeneous subregions in terms of social 
demographic variables (UNDP, 2013). 

TOPALS regression versus IS

IS methods use the mortality pattern in a large region as a standard shape for the patterns 
in component subregions (HORTA et al., 1998; LIMA; QUEIROZ; SAWYER, 2014), which imposes 
a strong homogeneity assumption. In contrast, TOPALS regression allows estimation and 
smoothing of age-specific mortality rates for small areas without assuming homogeneity. 

We first show results for several microregions in the Belo Horizonte metropolitan mesoregion, 
Região Metropolitana de Belo Horizonte (RMBH). We applied IS by (1) calculating mesoregion-
level male mortality rates for standard age groups (0,1-4,5-9,…,75-79)14 as death/exposure 
ratios for the entire RMBH mesoregion; (2) calculating the expected number of deaths in each 
microregion at those rates, given local age-specific exposure; (3) calculating a multiplier for each 
microregion as (observed deaths)/(expected deaths at mesoregional rates); (4) assuming that 
the rate schedule in each microregion is its local multiplier times the mesoregional schedule. 
We also estimated TOPALS regressions for each microregion using the HMD standard.

14 Standard practice (e.g. FREIRE et al., 2015) uses an upper age limit, often 80, for IS. We repeat that practice for the 
calculations in Graph 3.
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Because the Belo Horizonte microregion contains 76% of the male population of the 
RMBH mesoregion, it dominates these calculations: the shape of the RMBH schedule 
calculated in step (1) of IS is essentially determined by the age pattern of mortality in Belo 
Horizonte. This means, in turn, that the subregional schedules calculated in step (4) will 
also have the Belo Horizonte age pattern.

Graph 3 shows the results for four of the eight microregions in the RMBH mesoregion, 
and illustrates how TOPALS regression adds flexibility that can capture meaningful 
differences in mortality schedules across adjacent small areas. 

GRAPH 3 
Male mortality (log mx) by age 

Selected microregions of the Região Metropolitana de Belo Horizonte – 2010

Source: IBGE (2010) and Ministry of Health (http://www.datasus.gov.br). 
Note: Step functions over ages 0-79 are estimates from indirect standardization based on the mesoregion’s aggregate 
rates. Open circles are ln(Dx/Nx) from recorded deaths. Smooth lines are local TOPALS regression estimates. There are eight 
microregions in the Belo Horizonte metropolitan mesoregion; these four were selected in order to illustrate the potential variety 
in local age patterns. 
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Differences within a mesoregion: microregions in RMBH

TOPALS regression allows each subregion to have a different age pattern of mortality. 
Graph 4 presents TOPALS estimates of mortality schedules for all microregions within the 
RMBH mesoregion. In the left panel of Graph 4 one can see that at the youngest ages, at 
young adult ages, and at older ages 70+, there are notable differences in mortality rates 
between microregions. These differences become clearer in the right panel of Graph 4, 
which shows the differences between each microregion’s log rates and those of the Belo 
Horizonte microregion.15

Brazilian data quality studies show that RMBH had nearly complete coverage of 
deaths by sex and age in 2010 (LIMA; QUEIROZ, 2011; LIMA; QUEIROZ; SAWYER, 2014). 
Clear differences between the schedules in Graph 4 show that homogeneity in the 
underlying mortality patterns between adjacent small areas (in this case, adjacent Brazilian 
microregions) may be a poor assumption. 

GRAPH 4 
Male mortality rates (log mx) by age 

Microregions of the Região Metropolitana de Belo Horizonte – 2010

Source: IBGE (2010) and Ministry of Health (http://www.datasus.gov.br).

15 Because all fitted schedules are the sum of a common standard schedule plus a location-specific linear spline, the 
differences between local schedules are also linear splines. 
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Differences between mesoregions: Minas Gerais

In Graph 5 we shift the level of analysis to larger geographic scales. In contrast to 
the previous analyses, the RMBH mesoregion is now one of several subregions, with the 
entire state of Minas Gerais as the larger area. The graph shows TOPALS regression fits for 
male mortality rates by mesoregion (left panel). Differences between each mesoregion’s 
fitted schedule and the RMBH fit appear in the right panel. The left panel shows different 
underlying male mortality patterns between mesoregions, mainly for infants, young children, 
young adults, and at the oldest ages. Also, one can see that there is one mesoregion, Vale 
do Mucuri, with the highest mortality rates at almost every age. For females (results not 
shown in Graph 5),16 mesoregions other than Vale do Mucuri had more homogeneous 
mortality patterns than males, except at the oldest ages.

The notable differences between the Vale do Mucuri male mortality pattern and all other 
mesoregions in Minas Gerais need to be more carefully investigated. There is evidence that 
mortality due to violence and transit accidents in Brazil is increasing among young adult 
males (SOUZA; LIMA, 2007). There is also emerging evidence that mortality rates due to 
homicides are increasing in Brazil outside of metropolitan areas (SOUZA; LIMA, 2007; 
WAISELFISZ, 2013). However, these trends do not explain why mortality rates for children 
and adults are higher only in the Vale do Mucuri mesoregion, as we see in Graph 5.

In the right panel of Graph 5 we show differences between the estimated log 
mortality rates of each mesoregion and the RMBH mesoregion.17 Setting Vale do Mucuri 
aside temporarily, there are notable differences between RMBH and other Minas Gerais 
mesoregions.18 In particular, child and young adult mortality for males is much lower outside 
of RMBH. Mesoregions located in the North and Northeast of the state are characterized 
by higher infant mortality rates and lower young adult mortality rates (except for Vale do 
Mucuri). The high infant mortality rates outside of RMBH are consistent with the findings 
of Almeida and Szwarcwald (2014) for Minas Gerais. Municipalities in northern Minas 
Gerais, especially in the Jequitinhonha mesoregion, probably experienced the highest rates 
(CASTRO; SIMÕES, 2009; ALMEIDA; SZWARCWALD, 2014). The geographical distribution 
of child mortality risk seems similar to the infant mortality pattern (MCKINNON, 2010). 

Differences between mesoregions in violence and transit accidents could explain the 
regional differences in the mortality rates of young adult males. Although mortality due to 
violence is increasing among young adults around many areas in Brazil (SOARES FILHO et 
al., 2007; SOUZA; LIMA, 2007; WAISELFISZ, 2013), mortality due to transit accidents is also 
responsible for higher rates in state capitals and metropolitan areas (MELLO-JORGE; LATORRE, 
1994; MELLO-JORGE; GAWRYSZEWSKI; LATORRE, 1997; GAWRYSZEWSKI; KOIZUMI; MELLO-
JORGE, 2004). 

16 Results for females are available on the project website [URL redacted for review]
17 The shape of the mortality schedule for the RMBH mesoregion is very similar to the shape for the entire state of Minas Gerais. 
18 Our project website has color versions of all graphics. 
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GRAPH 5 
Male mortality by age 

Mesoregions of Minas Gerais – 2010

Source: IBGE (2010) and Ministry of Health (http://www.datasus.gov.br). 
Note: Right panel shows log(μx)-log(μx,RMBH) for each mesoregion in Minas Gerais.

In contrast to the situation for infants and young adults, at the oldest ages we have little 
evidence with which to evaluate the mesoregional differences. Due to the poor quality of both 
death and population data, there is no evidence about the underlying mortality pattern at oldest 
ages in Brazil, even in larger areas. A study about centenarians showed that age-specific mortality 
rates in Brazil are likely to be underestimated due to misreported ages (GOMES; TURRA, 2009). 
Brazilian centenarians are probably exaggerating their ages in the census (GOMES; TURRA, 
2009). The results in Graph 5, in which mesoregions located in the North and Northeast of the 
state have the lowest mortality rates at the oldest ages, suggest that the data quality problems 
could lead to underestimation of mortality rates in those parts of Minas Gerais.

Consistency of small- and large-area TOPALS estimates

Consistency between disaggregated and aggregated schedules is a desirable property 
for a small-area estimation procedure. Ideally, a region’s estimated mortality schedule 
should be identical regardless of whether one (1) aggregates death and exposure data for 
the entire region and then estimates a single mortality schedule, or (2) estimates separate 
mortality schedules for subregions and then aggregates those schedules. 
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TOPALS estimates of age-specific mortality rates do not have this mathematical property 
exactly, but in practice they are extremely consistent when aggregated. For purposes of 
analysis, note that empirical consistency implies that the estimated rate from aggregated 
regional data (     )µ�x  is related to subregional estimates (                  )µ      ,µ      ...ˆx1 x2ˆ  at each age as

∑µ µ=








�

N
N

ˆx
xi

x
i xi

                                                         
  (7)

where Nxi is the exposure at age x in subregion i and ∑=N Nx xii . Multiplying both sides of 
equation (7) by Nx produces ∑µ µ=N Nˆ ˆx x xii xi , or even more simply in terms of predicted 
deaths ∑=�D D̂x xii . Thus, consistency between estimated regional and subregional 
schedules implies that, at every age, the sum of predicted deaths in each small area equals 
the number of predicted deaths for the larger area. 

To assess the empirical consistency of TOPALS estimates, we aggregated predicted 
deaths by sex and age from smaller to larger areas at three geographic levels – from 137 
Brazilian mesoregions to 27 state schedules, from 558 microregions to 137 mesoregional 
schedules, and from 5565 municipalities to 558 microregional schedules. In all cases we will 
call the higher-level aggregate the “regional” schedule. There are thus 27+137+558 = 722 
aggregate regions and 2·722=1444 sex-specific regional schedules. For each regional 
schedule we calculated the TOPALS-predicted number of deaths at each age x=0…99 from 
aggregated regional data �D( )x  and the sum of predicted deaths from the corresponding 
subregional TOPALS estimates = ∑D D( ˆ ˆ )x i xi . 

Perfect consistency between regional and subregional schedules occurs if all 100 
calculated differences −%D D̂x x  are zero. Estimates are highly consistent if almost all 
differences are small. For each of the 1444 aggregated regional schedules, we evaluated 
consistency by calculating the mean absolute difference of the TOPALS estimates from 
higher- and lower-level geography, = ∑ −�MAD D D̂ /100x x x , and the mean absolute percent 
difference = ∑ −�

�
MAPD D D

D
ˆ

x x x
x

.

With TOPALS estimates, 1408 of the 1444 regional schedules had either MAD < 1 death 
or MAPD  < 1 percent. In the other 36 regional schedules the MAD never exceeded 2.12 
deaths. These are very small inconsistencies. 

For males in the RMBH mesoregion, for example, the TOPALS mortality estimates 
illustrated in Graphs 4 and 5 (for the eight component microregions and the larger RMBH 
mesoregion, respectively) are highly consistent. In the RMBH mesoregion the TOPALS-
predicted number of deaths in 2009-2011 from the mesoregional data is 58179, while the 
sum of deaths predicted in the component microregions is 58183.  The fitted age-specific 
schedules for RMBH are also extremely similar: over 100 ages, the MAD between regional 
and subregional predictions is 0.84 deaths, and the MAPD is 0.3%. 

In sum, TOPALS estimates for higher- and lower-level geographies are not perfectly 
consistent in theory. But they are highly consistent in practice. 



646 R. bras. Est. Pop., Rio de Janeiro, v.33, n.3, p.629-652, set./dez. 2016

Estimating age- and sex-specific mortality rates for small areas...Gonzaga, M.R. and Schmertmann, C.P.

Conclusion and discussion

In this paper we dealt with the problem of unstable event/exposure estimates in small 
populations. We proposed a Poisson regression method for estimating age-specific mortality 
rates that is based on the TOPALS relational model, and we illustrated the new method 
with small-area data from Brazil in 2010. In contrast to alternative estimation methods, 
our approach uses disaggregated, single-year age data, it does not impose a specific age 
pattern of mortality rates, and it allows appropriate use of the “zero” cells in which there 
are no recorded deaths.

Our application to Brazilian small areas was motivated by the hypothesis that different 
degrees of urbanization and development in subnational populations could mean that even 
adjacent areas might have different mortality patterns by age. Under this hypothesis, IS 
techniques commonly used to estimate age-specific mortality rates could produce biased 
estimates of small-area schedules.  

To demonstrate the plausibility of this hypothesis, we estimated mortality rates between 
and within mesoregions in Minas Gerais, one of Brazil’s most socially and demographically 
heterogeneous states. We observed notable differences in relative levels of child, young 
adult, and old-age mortality between and within mesoregions. TOPALS regression can 
capture these meaningful differences in mortality schedules across adjacent small areas, 
which would be obscured by IS. 

Many subnational areas in Brazil had almost full coverage of deaths in 2010, especially 
in the South and Southeast. For those areas, our method could be used to estimate complete 
life tables and to compare levels of mortality in terms of life expectancy at birth. Our method 
also allows comparisons of mortality rates at high ages (6099).

TOPALS regression represents a potential advance for mortality estimation in small 
areas with incomplete death registration that require undercount adjustments. Previous 
studies have identified many areas in Brazil with poor vital registration coverage (PAES; 
ALBUQUERQUE, 1999; LIMA; QUEIROZ, 2011; JUSTINO; FREIRE; LUCIO, 2012; LIMA; 
QUEIROZ; SAWYER, 2014; FREIRE et al., 2015). Current approaches for estimating mortality 
rates in such areas (e.g., HORTA et al., 1998; LIMA; QUEIROZ; SAWYER, 2014) use a two-step 
process: (1) IS to smooth small-area rates and estimate expected numbers of deaths by 
age group, followed by (2) correction for under-registration by applying Death Distribution 
Methods to the smoothed data. 

As we have demonstrated above, IS based on higher-level geographic aggregates can 
lead to systematic mistakes in the first step of this process. These mistakes could then 
lead to incorrect conclusions about the completeness of registration in the second step. 
For example, if one used IS to smooth rates for Conselheiro Lafaiete (the step function in 
the top right panel of Graph 3), then the cluster of lower-than-expected mortality rates at 
child and young adult ages in would be misinterpreted as under-registration. 
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A method like TOPALS regression that does not impose a particular shape on the first-
stage estimates would clearly work better in cases like Conselheiro Lafaiete, where the data 
is good, and a flexible model will more accurately estimate real local patterns. However, 
it remains unclear whether flexibility in the first stage has net benefits when observed 
death/exposure ratios are strongly affected by under-registration.19 TOPALS regression 
approach for first-stage estimation and smoothing seems promising as a component 
for more complex correction models, but we have not investigated its advantages and 
disadvantages in this paper.
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Resumo

Estimativa de taxas de mortalidade por idade e sexo para pequenas áreas com regressão de 
TOPALS: uma aplicação para o Brasil em 2010

A alta variabilidade dos dados nos registros vitais, em razão do baixo número de pessoas 
expostas, impõe sérios problemas para estimação da mortalidade por idade e sexo em pequenas 
áreas. Muitas abordagens atuais, incluindo as mais utilizadas no Brasil, estimam as taxas 
específicas de mortalidade assumindo pressupostos matemáticos rígidos sobre o verdadeiro 
padrão etário da mortalidade. Padronização indireta, por exemplo, assume que todas as áreas 
dentro de uma área maior (microrregiões em uma mesorregião, por exemplo) possuem um padrão 
de mortalidade idêntico, com diferença constante no nível das taxas logarítmicas por idade. 
Propomos um método estatístico mais flexível que combina regressão Poisson com um modelo 
relacional denominado TOPALS (DE BEER, 2012). Usamos o novo método para estimar as taxas 
específicas de mortalidade em pequenas áreas no Brasil (estados, mesorregiões, microrregiões e 
municípios) em 2010. Resultados para o estado de Minas Gerais mostram diferenças notáveis no 
padrão de mortalidade por idade entre pequenas áreas adjacentes, demonstrando as vantagens 
do uso de um método de estimação mais flexível.

Palavras-chave: Mortalidade. Pequenas áreas. Método TOPALS. Regressão Poisson.

Resumen

Estimación de las tasas de mortalidad por edad y sexo de las pequeñas áreas con regresión 
de TOPALS: una aplicación a Brasil en 2010 

La alta variabilidad de los datos en los registros vitales, debida al bajo número de personas 
expuestas al riesgo de morir, plantea serios problemas para la estimación de la mortalidad por 
edad y sexo en pequeñas áreas. Muchos enfoques recientes, incluyendo los más utilizados en 
Brasil, estiman las tasas de mortalidad por edad con presupuestos matemáticos rígidos acerca 
del verdadero padrón etario de la mortalidad. La estandarización indirecta, por ejemplo, asume 
que todas las áreas dentro de una área mayor (microrregiones de una mesorregión) tengan 
una idéntica estructura de la mortalidad, con diferencia constante en los niveles de las tasas 
logarítmicas por edad. Proponemos un método estadístico más flexible que combina la regresión 
de Poisson con un modelo relacional llamado TOPALS. Utilizamos el nuevo método para estimar 
las tasas de mortalidad específicas en pequeñas áreas en Brasil (estados, mesorregiones, 
microrregiones y municipios) en 2010. Los resultados para el estado de Minas Gerais muestran 
diferencias notables en la estructura de mortalidad entre áreas pequeñas adyacentes, lo que 
demuestra las ventajas de usar un método de estimación más flexible.

Palabras clave: Mortalidad. Áreas pequeñas. Método TOPALS. Regresión Poisson.
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