Expressões de forma fechada para as expectativas de vida de Gompertz-Makeham: uma nota histórica

Autores

DOI:

https://doi.org/10.20947/S0102-3098a0220

Palavras-chave:

Lei de mortalidade de Gompertz-Makeham, Expectativa de vida, Ciências atuariais, Anuidades, Fragilidade, Modelo gama-Gompertz

Resumo

Resultados bem conhecidos pela comunidade atuarial sobre expressões de forma fechada para esperança de vida de Gompertz e Gompertz-Makeham para uma pessoa de idade x ainda estão sendo redescobertos de forma independente nos dias atuais. Esta nota visa fornecer algum reconhecimento aos resultados anteriores sobre expressões de forma fechada para expectativa de vida de Gompertz e Gompertz-Makeham, especialmente no campo das ciências atuariais, na esperança de estimular a interdisciplinaridade e fornecer o pano de fundo para novos desenvolvimentos, em especial porque a derivação de expressões de forma fechadas para expectativa de vida (e anuidades) com base em leis de mortalidade despertam o interesse de várias áreas, como ciências atuariais, biologia, demografia, estatística, entre outras.

Downloads

Não há dados estatísticos.

Biografia do Autor

Filipe Costa de Souza, Universidade Federal de Pernambuco (UFPE), Recife-PE, Brazil

Filipe Costa de Souza holds a PhD in Economics from Universidade Federal de Pernambuco (UFPE) and he is currently a professor at the Departamento de Ciências Contábeis e Atuariais, also at UFPE.

Referências

ADLER, J. Comment on “Modeling purchasing behavior with sudden ‘death’: a flexible customer lifetime model”. Management Science, 26 Apr. 2022.

BANTAN, R. A. et al. Theory and applications of the unit gamma/Gompertz distribution. Mathematics, v. 9, n. 16, 2021.

BEARD, R. E. Note on some mathematical mortality models. In. WOLSTENHOLME, G. E. W.; O’CONNOR, M. (ed.). The lifespan of animals. Boston: Little Brown, 1959. p. 301-311.

BARBI, E. et al. The plateau of human mortality: demography of longevity pioneers. Science, v. 360, n. 6396, p. 1459-1461, 2018.

BEMMAOR, A. C.; GLADY, N. Modeling purchasing behavior with sudden “death”: a flexible customer lifetime model. Management Science, v. 58, n. 5, p. 1012-1021, 2012.

BÖHNSTEDT, M.; GAMPE, J. Detecting mortality deceleration: likelihood inference and model selection in the gamma-Gompertz model. Statistics and Probabilities Letters, v. 150, p. 68-73, 2019.

BOWERS, N. L. et al. Actuarial Mathematics. Itasca: The Society of Actuaries, 1986.

BOWIE, D. C. Analytic expression for annuities based on Makeham-Beard mortality laws. Annals of Actuarial Science, v. 15, p. 1-13, 2021.

BUTT, Z.; HABERMAN, S. Application of frailty-based mortality models using generalized linear models. Astin Bulletin, v. 34, p. 175-197, 2004.

CASTELLARES, F.; PATRÍCIO, S. C.; LEMONTE, A. J. On gamma-Gompertz life expectancy. Statistics and Probability Letters, v. 165, e 108832, 2020.

CASTELLARES, F. et al. On closed-form expressions to Gompertz-Makeham life expectancy. Theoretical Population Biology, v. 134, p. 53-60, 2020.

CHAN, B. Life annuities under Makeham’s law. Scandinavian Actuarial Journal, v. 3-4, p. 238-240, 1982.

DEY, S.; MOALA, F. A.; KUMAR, D. Statistical properties and different methods of estimation of Gompertz distribution with application. Journal of Statistical and Management Systems, v. 21, n. 5, p. 839-876, 2018.

FORFAR, D. O. Mortality laws. In: TEUGELS, J. L.; SUND, B.; MACDONALD, A. S. (ed.). Encyclopedia of Actuarial Science, 2006. https://doi.org/10.1002/9780470012505.tam029

GOMPERTZ, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, v. 115, p. 513-583, 1825.

HABERMAN S. Landmarks in the history of actuarial science (up to 1919). London: Department of Actuarial Science and Statistics, City University, 1996. (Actuarial Research Paper, n. 84).

HOEM, J. M. The reticent trio: some little-known early discoveries in life insurance mathematics by LHF Oppermann, TN Thiele and JP Gram. International Statistical Review, v. 51, n. 2, p. 213-221, 1983.

JODRÁ, P. A closed-form expression for the quantile function of the Gompertz-Makeham distribution. Mathematics and Computers in Simulation, v. 79, n. 10, p. 3069-3075, 2009.

JODRÁ, P. On order statistics from the Gompertz-Makeham distribution and the Lambert W function. Mathematical Modelling and Analysis, v. 18, n. 3, p. 432-445, 2013.

JORDAN, C. W. Life contingencies. Chicago: The Society of Actuaries, 1967.

LI, H. et al. Gompertz law revisited: forecasting mortality with a multi-factor exponential model. Insurance: Mathematics and Economics, v. 99, p. 268-281, 2021.

MAKEHAM, W. M. On the law of mortality and the construction of annuity tables. Journal of the Institute of Actuaries, v. 8, n. 6, p. 301-310, 1860.

MAKEHAM, W. M. On the law of mortality. Journal of the Institute of Actuaries, v. 13, n. 6, p. 325-358, 1867.

MAKEHAM, W. M. On the integral of Gompertz’s function for expressing the values of sums depending upon the contingency of life. Journal of the Institute of Actuaries, v. 17, n. 5, p. 305-327, 1873.

MCCLINTOCK, E. On the computation of annuities on Mr. Makeham’s hypothesis. Journal of the Institute of Actuaries and Assurance Magazine, v. 18, p. 242-247, 1874.

MEREU, J. A. Annuity values directly from the Makeham constants. Transactions of the Society of Actuaries, v. 14, p. 269-308, 1962.

MILEVSKY, M. A. The calculus of retirement income: financial models for pension annuities and life insurance. New York: Cambridge University Press, 2006.

MILEVSKY, M. A.; SALISBURY, T. S.; ALEXANDER, C. The implied longevity curve: how long does the market think you going to live? The Journal of Investment Consulting, v. 17, p. 11-21, 2016.

MISSOV, T. I. Analytic expressions for life expectancy in gamma-Gompertz mortality settings. In: POPULATION ASSOCIATION OF AMERICA - 2010 ANNUAL MEETING PROGRAM. Proceedings […]. Dallas, Texas: PAA, 2010. Available at: https://paa2010.princeton.edu/papers/101461 Accessed on: 05 June 2021.

MISSOV, T. I. Gamma-Gompertz life expectancy at birth. Demographic Research, v. 28, p. 259-270, 2013.

MISSOV, T. I. Response letter to “Gamma-Gompertz life expectancy at birth”, Demographic Research, 12 February 2013. Demographic Research, 2021. Available at: https://www.demographic-research.org/volumes/vol28/9/letter_74.pdf . Accessed on: 10 Sep. 2021.

MISSOV, T. I.; FINKELSTEIN, M. Admissible mixing distributions for a general class of mixture survival models with known asymptotics. Theoretical Population Biology, v. 80, n. 1, p. 64-70, 2011.

MISSOV, T. I.; LENART, A. Linking period and cohort life-expectancy linear increases in Gompertz proportional hazards models. Demographic Research, v. 24, p. 455-468, 2011.

MISSOV, T. I.; LENART, A. Gompertz-Makeham life expectancies: expressions and applications. Theoretical Population Biology, v. 90, p. 29-35, 2013.

MISSOV, T. I.; LENART, A.; VAUPEL, J. W. Gompertz-Makeham life expectancies - analytical solutions, approximations, and inferences. In: POPULATION ASSOCIATION OF AMERICA - 2012 ANNUAL MEETING PROGRAM. Proceedings […]. Dallas, Texas: PAA, 2012. Available at: https://paa2012.princeton.edu/papers/121013 Accessed on: 05 June 2021.

MISSOV, T. I.; NÉMETH, L. Sensitivity of model-based human mortality measures to exclusion of the Makeham or the frailty parameter. Genus, v. 71, n. 2-3, 2016.

MISSOV, T. I.; NÉMETH, L.; DAŃKO, M. J. How much can we trust life tables? Sensitivity of mortality measures to right-censoring treatment. Palgrave Communications, v. 2, n. 1, p. 1-10, 2016.

MISSOV, T. I. et al. The Gompertz force of mortality in terms of the modal age at death. Demographic Research, v. 32, p. 1031-1048, 2015.

NÉMETH, L.; MISSOV, T. I. Adequate life-expectancy reconstruction for adult human mortality data. PloS One, v. 13, n. 6, e0198485, 2018.

OLSHANSKY, S. J. The law of mortality revisited: interspecies comparisons of mortality. Journal of Comparative Pathology, v. 142, S4-S9, 2010.

OLSHANSKY, S. J.; CARNES, B. A. Ever since Gompertz. Demography. v. 34, n. 1, p. 1-15, 1997.

PATRÍCIO, S. C. Modelagem de mortalidade. Dissertação (Mestrado) - Universidade Federal de Minas Gerais, Programa de Pós-graduação em Estatística, Belo Horizonte, 2020.

PERKS, W. On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries, v. 63, p. 12-40, 1932.

PITACCO, E. From Halley to “frailty: a review of survival models for actuarial calculations. Giornale dell’Instituto Italiano degli Attuari, v. 67, n. 1-2, p. 7-47, 2004.

RICHARDS, S. J. A handbook of parametric survival models for actuarial use. Scandinavian Actuarial Journal, v. 4, p. 233-257, 2012.

RIETZ, H. L. On certain properties of Makeham’s laws of mortality with applications. The American Mathematical Monthly, v. 28, p. 158-165, 1921.

RIETZ, H. L. On certain applications of the differential and integral calculus in actuarial science. The American Mathematical Monthly, v. 33, n. 1, p. 9-23, 1926.

SALINARI, G.; DE SANTIS, G. One or more rates of ageing? The extended gamma-Gompertz model (EGG). Statistical Methods & Applications, v. 29, n. 2, p. 211-236, 2020.

SCARPELLO, G. M.; RITELLI, D.; SPELTA, D. Actuarial values calculated using the incomplete gamma function. Statistica, v. 66, n. 1, p. 77-84, 2006.

TEUGELS, J. L. De Moivre, Abraham (1667-1754). In: TEUGELS, J. L.; SUND, B.; LEMAIRE, J. (ed.). Encyclopedia of Actuarial Science, 2006. https://doi.org/10.1002/9780470012505.tad004

VAUPEL, J. W.; MANTON, K. G.; STALLARD, E. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, v. 16, p. 439-454, 1979.

VAUPEL, J. M.; MISSOV, T. I. Unobserved population heterogeneity: a review of formal relationships. Demographic Research, v. 31, p. 659-688, 2014.

WOOLHOUSE, W. S. B. On an improved theory of annuities and assurances. Journal of the Institute of Actuaries, v. 15, n. 2, p. 95-125, 1869.

Downloads

Publicado

2022-11-21

Como Citar

Souza, F. C. de. (2022). Expressões de forma fechada para as expectativas de vida de Gompertz-Makeham: uma nota histórica. Revista Brasileira De Estudos De População, 39, 1–12. https://doi.org/10.20947/S0102-3098a0220

Edição

Seção

Nota técnica