Closed-form expressions to Gompertz-Makeham life expectancies: a historical note

Authors

DOI:

https://doi.org/10.20947/S0102-3098a0220

Keywords:

Gompertz-Makeham mortality law, Life expectancy, Actuarial science, Annuities, Frailty, Gamma-Gompertz model

Abstract

Results well known in the actuarial community about closed-form expressions to Gompertz and Gompertz-Makeham life expectancies for a person aged x are still being independently rediscovered to this day. This note seeks to acknowledge previous results about closed-form expressions to Gompertz-Makeham life expectancies, especially in the actuarial science field, hoping to stimulate interdisciplinarity and provide the background for further developments, especially since the derivation of closed-form expressions for life expectancy (and annuities) based on particular mortality laws are matters of interest for multiple fields such as actuarial science, biology, demography, statistics among others.

Downloads

Download data is not yet available.

Author Biography

Filipe Costa de Souza, Universidade Federal de Pernambuco (UFPE), Recife-PE, Brazil

Filipe Costa de Souza holds a PhD in Economics from Universidade Federal de Pernambuco (UFPE) and he is currently a professor at the Departamento de Ciências Contábeis e Atuariais, also at UFPE.

References

ADLER, J. Comment on “Modeling purchasing behavior with sudden ‘death’: a flexible customer lifetime model”. Management Science, 26 Apr. 2022.

BANTAN, R. A. et al. Theory and applications of the unit gamma/Gompertz distribution. Mathematics, v. 9, n. 16, 2021.

BEARD, R. E. Note on some mathematical mortality models. In. WOLSTENHOLME, G. E. W.; O’CONNOR, M. (ed.). The lifespan of animals. Boston: Little Brown, 1959. p. 301-311.

BARBI, E. et al. The plateau of human mortality: demography of longevity pioneers. Science, v. 360, n. 6396, p. 1459-1461, 2018.

BEMMAOR, A. C.; GLADY, N. Modeling purchasing behavior with sudden “death”: a flexible customer lifetime model. Management Science, v. 58, n. 5, p. 1012-1021, 2012.

BÖHNSTEDT, M.; GAMPE, J. Detecting mortality deceleration: likelihood inference and model selection in the gamma-Gompertz model. Statistics and Probabilities Letters, v. 150, p. 68-73, 2019.

BOWERS, N. L. et al. Actuarial Mathematics. Itasca: The Society of Actuaries, 1986.

BOWIE, D. C. Analytic expression for annuities based on Makeham-Beard mortality laws. Annals of Actuarial Science, v. 15, p. 1-13, 2021.

BUTT, Z.; HABERMAN, S. Application of frailty-based mortality models using generalized linear models. Astin Bulletin, v. 34, p. 175-197, 2004.

CASTELLARES, F.; PATRÍCIO, S. C.; LEMONTE, A. J. On gamma-Gompertz life expectancy. Statistics and Probability Letters, v. 165, e 108832, 2020.

CASTELLARES, F. et al. On closed-form expressions to Gompertz-Makeham life expectancy. Theoretical Population Biology, v. 134, p. 53-60, 2020.

CHAN, B. Life annuities under Makeham’s law. Scandinavian Actuarial Journal, v. 3-4, p. 238-240, 1982.

DEY, S.; MOALA, F. A.; KUMAR, D. Statistical properties and different methods of estimation of Gompertz distribution with application. Journal of Statistical and Management Systems, v. 21, n. 5, p. 839-876, 2018.

FORFAR, D. O. Mortality laws. In: TEUGELS, J. L.; SUND, B.; MACDONALD, A. S. (ed.). Encyclopedia of Actuarial Science, 2006. https://doi.org/10.1002/9780470012505.tam029

GOMPERTZ, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, v. 115, p. 513-583, 1825.

HABERMAN S. Landmarks in the history of actuarial science (up to 1919). London: Department of Actuarial Science and Statistics, City University, 1996. (Actuarial Research Paper, n. 84).

HOEM, J. M. The reticent trio: some little-known early discoveries in life insurance mathematics by LHF Oppermann, TN Thiele and JP Gram. International Statistical Review, v. 51, n. 2, p. 213-221, 1983.

JODRÁ, P. A closed-form expression for the quantile function of the Gompertz-Makeham distribution. Mathematics and Computers in Simulation, v. 79, n. 10, p. 3069-3075, 2009.

JODRÁ, P. On order statistics from the Gompertz-Makeham distribution and the Lambert W function. Mathematical Modelling and Analysis, v. 18, n. 3, p. 432-445, 2013.

JORDAN, C. W. Life contingencies. Chicago: The Society of Actuaries, 1967.

LI, H. et al. Gompertz law revisited: forecasting mortality with a multi-factor exponential model. Insurance: Mathematics and Economics, v. 99, p. 268-281, 2021.

MAKEHAM, W. M. On the law of mortality and the construction of annuity tables. Journal of the Institute of Actuaries, v. 8, n. 6, p. 301-310, 1860.

MAKEHAM, W. M. On the law of mortality. Journal of the Institute of Actuaries, v. 13, n. 6, p. 325-358, 1867.

MAKEHAM, W. M. On the integral of Gompertz’s function for expressing the values of sums depending upon the contingency of life. Journal of the Institute of Actuaries, v. 17, n. 5, p. 305-327, 1873.

MCCLINTOCK, E. On the computation of annuities on Mr. Makeham’s hypothesis. Journal of the Institute of Actuaries and Assurance Magazine, v. 18, p. 242-247, 1874.

MEREU, J. A. Annuity values directly from the Makeham constants. Transactions of the Society of Actuaries, v. 14, p. 269-308, 1962.

MILEVSKY, M. A. The calculus of retirement income: financial models for pension annuities and life insurance. New York: Cambridge University Press, 2006.

MILEVSKY, M. A.; SALISBURY, T. S.; ALEXANDER, C. The implied longevity curve: how long does the market think you going to live? The Journal of Investment Consulting, v. 17, p. 11-21, 2016.

MISSOV, T. I. Analytic expressions for life expectancy in gamma-Gompertz mortality settings. In: POPULATION ASSOCIATION OF AMERICA - 2010 ANNUAL MEETING PROGRAM. Proceedings […]. Dallas, Texas: PAA, 2010. Available at: https://paa2010.princeton.edu/papers/101461 Accessed on: 05 June 2021.

MISSOV, T. I. Gamma-Gompertz life expectancy at birth. Demographic Research, v. 28, p. 259-270, 2013.

MISSOV, T. I. Response letter to “Gamma-Gompertz life expectancy at birth”, Demographic Research, 12 February 2013. Demographic Research, 2021. Available at: https://www.demographic-research.org/volumes/vol28/9/letter_74.pdf . Accessed on: 10 Sep. 2021.

MISSOV, T. I.; FINKELSTEIN, M. Admissible mixing distributions for a general class of mixture survival models with known asymptotics. Theoretical Population Biology, v. 80, n. 1, p. 64-70, 2011.

MISSOV, T. I.; LENART, A. Linking period and cohort life-expectancy linear increases in Gompertz proportional hazards models. Demographic Research, v. 24, p. 455-468, 2011.

MISSOV, T. I.; LENART, A. Gompertz-Makeham life expectancies: expressions and applications. Theoretical Population Biology, v. 90, p. 29-35, 2013.

MISSOV, T. I.; LENART, A.; VAUPEL, J. W. Gompertz-Makeham life expectancies - analytical solutions, approximations, and inferences. In: POPULATION ASSOCIATION OF AMERICA - 2012 ANNUAL MEETING PROGRAM. Proceedings […]. Dallas, Texas: PAA, 2012. Available at: https://paa2012.princeton.edu/papers/121013 Accessed on: 05 June 2021.

MISSOV, T. I.; NÉMETH, L. Sensitivity of model-based human mortality measures to exclusion of the Makeham or the frailty parameter. Genus, v. 71, n. 2-3, 2016.

MISSOV, T. I.; NÉMETH, L.; DAŃKO, M. J. How much can we trust life tables? Sensitivity of mortality measures to right-censoring treatment. Palgrave Communications, v. 2, n. 1, p. 1-10, 2016.

MISSOV, T. I. et al. The Gompertz force of mortality in terms of the modal age at death. Demographic Research, v. 32, p. 1031-1048, 2015.

NÉMETH, L.; MISSOV, T. I. Adequate life-expectancy reconstruction for adult human mortality data. PloS One, v. 13, n. 6, e0198485, 2018.

OLSHANSKY, S. J. The law of mortality revisited: interspecies comparisons of mortality. Journal of Comparative Pathology, v. 142, S4-S9, 2010.

OLSHANSKY, S. J.; CARNES, B. A. Ever since Gompertz. Demography. v. 34, n. 1, p. 1-15, 1997.

PATRÍCIO, S. C. Modelagem de mortalidade. Dissertação (Mestrado) - Universidade Federal de Minas Gerais, Programa de Pós-graduação em Estatística, Belo Horizonte, 2020.

PERKS, W. On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries, v. 63, p. 12-40, 1932.

PITACCO, E. From Halley to “frailty: a review of survival models for actuarial calculations. Giornale dell’Instituto Italiano degli Attuari, v. 67, n. 1-2, p. 7-47, 2004.

RICHARDS, S. J. A handbook of parametric survival models for actuarial use. Scandinavian Actuarial Journal, v. 4, p. 233-257, 2012.

RIETZ, H. L. On certain properties of Makeham’s laws of mortality with applications. The American Mathematical Monthly, v. 28, p. 158-165, 1921.

RIETZ, H. L. On certain applications of the differential and integral calculus in actuarial science. The American Mathematical Monthly, v. 33, n. 1, p. 9-23, 1926.

SALINARI, G.; DE SANTIS, G. One or more rates of ageing? The extended gamma-Gompertz model (EGG). Statistical Methods & Applications, v. 29, n. 2, p. 211-236, 2020.

SCARPELLO, G. M.; RITELLI, D.; SPELTA, D. Actuarial values calculated using the incomplete gamma function. Statistica, v. 66, n. 1, p. 77-84, 2006.

TEUGELS, J. L. De Moivre, Abraham (1667-1754). In: TEUGELS, J. L.; SUND, B.; LEMAIRE, J. (ed.). Encyclopedia of Actuarial Science, 2006. https://doi.org/10.1002/9780470012505.tad004

VAUPEL, J. W.; MANTON, K. G.; STALLARD, E. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, v. 16, p. 439-454, 1979.

VAUPEL, J. M.; MISSOV, T. I. Unobserved population heterogeneity: a review of formal relationships. Demographic Research, v. 31, p. 659-688, 2014.

WOOLHOUSE, W. S. B. On an improved theory of annuities and assurances. Journal of the Institute of Actuaries, v. 15, n. 2, p. 95-125, 1869.

Downloads

Published

2022-11-21

How to Cite

Souza, F. C. de. (2022). Closed-form expressions to Gompertz-Makeham life expectancies: a historical note. Brazilian Journal of Population Studies, 39, 1–12. https://doi.org/10.20947/S0102-3098a0220

Issue

Section

Techinical Note