Population projection, climate change and economic effects: assessment based on agricultural economic blocks

Authors

DOI:

https://doi.org/10.20947/S0102-3098a0125

Keywords:

Population projection, Climate change, Agricultural economic blocks, Economic effects

Abstract

The future population trajectory, as well as climate change, are aspects that generate uncertainties as to their probable effects on the economy, especially on agricultural production and food industry. This paper simulates the effects of population scenarios and one of climate change using the GTAP computable general equilibrium model. A version of GTAP 10 was created to identify Agriculture, Forestry and Food Industry activities, and eight regions, called Agricultural Economic Blocks, using multivariate analysis techniques. The dynamic simulations of the accumulated deviation between the baseline and the policy scenarios up to 2050 in isolation indicated widespread negative effects of climate change on the GDP and economic activities of the blocs. The results of the population scenarios indicated that the blocks made up of richer countries and with more diversified economies would tend to win at the expense of the others in terms of GDP. On the other hand, they would generally encourage the blocks’ Agriculture, Forestry and Food Industry productions. Taken together, the negative effects of climate change would tend to outweigh the positive effects of population scenarios and more intensively on those which project less population growth.

Downloads

Download data is not yet available.

Author Biographies

Weslem Rodrigues Faria, UFJF

Weslem Rodrigues Faria é doutor em Teoria Econômica pela Universidade de São Paulo (FEA/USP). Professor do Departamento de Economia e do Programa de Pós-graduação em Economia da Universidade Federal de Juiz de Fora (UFJF).

Fernando Salgueiro Perobelli, UFJF

Fernando Salgueiro Perobelli é doutor em Teoria Econômica pela Universidade de São Paulo (FEA/USP). Professor do Departamento de Economia e do Programa de Pós-graduação em Economia da Universidade Federal de Juiz de Fora (UFJF).

Daniele Lima de Oliveira Souza, UFJF

Daniele Lima de Oliveira Souza é mestre em Economia pelo Programa de Pós-graduação em Economia da Universidade Federal de Juiz de Fora (UFJF).

References

AGUIAR, A.; CHEPELIEV, M.; CORONG, E.; MCDOUGALL, R; VAN DER MENSBRUGGHE, D. The GTAP Data Base: version 10. Journal of Global Economic Analysis, v. 4, n. 1, p. 1-27, 2019.

AKÜNAL, E.; EROL, S. Using cluster analysis to define the position of a developing country in global transportation services trade environment. Gazi University Journal of Science, v. 29, n. 4, p. 751-767, 2016.

ASSUNÇÃO, J.; CHEIN, F. Climate change and agricultural productivity in Brazil: future perspectives. Environment and Development Economics, v. 21, n. 5, p. 581-602, 2016.

BANDARA, J. S.; CAI, Y. The impact of climate change on food crop productivity, food prices and food security in South Asia. Economic Analysis and Policy, v. 44, n. 4, p. 451-465, 2014.

BARBIERI, A. F.; DOMINGUES, E.; QUEIROZ, B. L.; RUIZ, R. M.; RIGOTTI, J. I.; CARVALHO, J A. M.; RESENDE, M. F. Population and Environment, v. 31, n. 5, special issue on Climate Change: Understanding Anthropogenic Contributions and Responses, p. 344-370, 2010.

BOSERUP, E. The conditions of agricultural growth: the economics of agrarian change under population. Londres: Allen and Unwin; Chicago: Aldine, 1965.

BURFISHER, M. E. Introduction to computable general equilibrium models. Cambridge: Cambridge University Press, 2017.

BURNIAUX, J. Incorporating carbon sequestration into CGE models: a prototype GTAP model with land use, 2002. Disponível em: https://www.gtap.agecon.purdue.edu/resources/download/1219.pdf. Acesso em: 15 nov. 2018.

CALIŃSKI, T.; HARABASZ, J. A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, v. 3, n. 1, p. 1-27, 1974.

COLLINS, J. Agriculture and population growth. Jason Collins Blog, Sep. 17, 2012. Disponível em: https://jasoncollins.org/2012/09/17/agriculture-and-population-growth/. Acesso em: 15 nov. 2018.

CURI, P. R. Agrupamento de países segundo indicadores de padrão de vida. Revista de Saúde Pública, v. 27, n. 2, p. 127-134, 1993.

DAVIS, K. The world demographic transition. Annals of the American Academy of Political and Social Science, v. 237, n. 1, p. 1-11, 1945.

DEVUYST, E.; PRECKEL, P. Sensitivity analysis revisited: a quadrature-based approach. Journal of Policy Modeling, v. 19, n. 2, p. 175-185, 1997.

DIXON, P. B.; RIMMER, M. Dynamic general equilibrium modeling for forecasting and policy: a practical guide and documentation of MONASH. Amsterdam: North-Holland, 2002.

DIXON, P. B.; PARMENTER, B. R.; POWEEL, A. A.; WILCOXEN, P. J. Notes and problem in applied general equilibrium economics. Amsterdam: North-Holland, 1992.

DUDA, R. O.; HART, P. E. Pattern classification and scene analysis. New York: Wiley, 1973.

EASTERLING, D. R.; WEHNER, M. F. Is the climate warming or cooling? Geophysical Research Letters, v. 36, n. 8, 2009.

FAO – Food and Agriculture Organization of the United Nations. Food and agriculture data.

FAOSTAT, 2020. Disponível em: http://www.fao.org/faostat. Acesso em: 30 mar. 2020.

FARIA, W. R.; HADDAD, E. A. Modeling land use and the effects of climate change in Brazil. Climate Change Economics, v. 8, n. 1, 2017.

FEDOROFF, N. V.; BATTISTI, D. S.; BEACHY, R. N.; COOPER, P. J. M.; FISCHHOFF, D. A.; HODGES, C. N.; KNAUF, V. C.; LOBELL, D.; MAZUR, B. J.; MOLDEN, D.; REYNOLDS, M. P.; RONALD, M. W.; ROSEGRANT, M. W.; SANCHEZ, P. A.; VONSHAK, A.; ZHU, J.-K. Radically rethinking agriculture for the 21st century. Science, v. 327, n. 5967, p. 833-834, 2010.

FÉRES, J.; REIS, E.; SPERANZA, J. Mudanças climáticas globais e seus impactos sobre os padrões de uso do solo no Brasil. In: XXXVII ENCONTRO NACIONAL DE ECONOMIA. Anais [...]. Foz do Iguaçu: Anpec, 2009.

FERREIRA FILHO, J. B.; HORRIDGE, M. Climate change impacts on agriculture and internal migrations in Brazil. In: 48º CONGRESSO DA SOCIEDADE BRASILEIRA DE ECONOMIA, ADMINISTRAÇÃO E SOCIOLOGIA RURAL. Anais [...]. Campo Grande: Sober, 2010. Disponível em: http://www.sober.org.br/palestra/15/280.pdf. Acesso em: 15 nov. 2018.

FIGUEIREDO, A. M. R.; FERREIRA, A. V.; TEIXEIRA, E. C. Impactos da integração econômica nas commodities da economia brasileira e da União Europeia. Revista Brasileira de Economia, Rio de Janeiro, v. 55, n. 1, p. 77-106, 2001.

FUGLIE, K. O.; WANG, S. L.; BALL, V. E. Productivity growth in agriculture: an international perspective. Oxfordshire, UK: CAB International, 2012.

GODFRAY, H. C. J.; BEDDINGTON, J. R.; CRUTE, I. R.; HADDAD, L.; LAWRENCE, D.; MUIR, J. F.; PRETTY, J.; ROBINSON, S.; THOMAS, S. M.; TOULMIN, C. Food security: the challenge of feeding 9 billion people. Science, v. 327, n. 5967, p. 812-818, 2010.

GORNALL, J.; BETTS, R.; BURKE, E.; CLARK, R.; CAMP, J.; WILLET, K.; WILTSHIRE, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B, v. 365, p. 2973-2989, 2010.

GURGEL, A. C.; CAMPOS, A. C. Avaliação de políticas comerciais em modelos de equilíbrio geral com pressuposições alternativas quanto aos retornos de escala. Revista Estudos Econômicos, v. 36, n. 2, p. 323-354, 2006.

HADDAD, E. A.; DOMINGUES, E. EFES – Um modelo aplicado de equilíbrio geral para a economia brasileira: projeções setoriais para 1999-2004. Estudos Econômicos, v. 31, n. 1, p. 89-125, 2001.

HAYAMI, Y.; RUTTAN, V. W. Agricultural productivity differences among countries. The American Economic Review, v. 60, n. 5, p. 895-911, 1970.

HEISTERMANN, M.; MÜLLER, C.; RONNEBERGER, K. Land in sight? Achievements, deficits and potentials of continental to global scale land-use modeling. Agriculture, Ecosystems and Environment, v. 114, p. 141-158, 2006.

HERTEL, T. Global trade analysis: modeling and applications. Cambridge: Cambridge University Press,1997.

HERTEL, T.; VAN DER MENSBRUGGHE, D. Behavioral parameters. West Lafayette: Center for Global Trade Analysis. Purdue University, 2016. (GTAP 9 Data Base Documentation). Disponível em: https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=5138. Acesso em: 06 abr. 2020.

IANCHOVICHINA, E.; McDOUGALL, R. Theoretical structure of dynamic GTAP. West Lafayette: Center for Global Trade Analysis, 2000. (GTAP Technical Paper, n. 17). Disponível em: https://www.gtap.agecon.purdue.edu/resources/download/160.pdf. Acesso em: 30 mar. 2020.

IANCHOVICHINA, E.; WALMSLEY, T. Dynamic modeling and applications for global economic analysis. Cambridge: Cambridge University Press, 2012.

JOHNSON, R. A.; WICHERN, D. W. Applied multivariate statistical analysis. 6. ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2007.

KAGEYAMA, A.; LEONE, E. T. Uma tipologia dos municípios paulistas com base em indicadores sócio demográficos. Campinas: IE/Unicamp, 1999.

KUZNETS, S. S. The economic growth of nations. Cambrigde, MA: Harvard University Press, 1971.

LEE, H-L. The impact of climate change on global food supply and demand, food prices, and land use. Paddy and Water Environment, v. 7, n. 4, p. 321-331, 2009.

LEITE, G. B.; BRIGATTE, H.; DE AGUILAR, E. B. Análise multivariada de indicadores socioeconômicos dos países do G-20. Revista de Economia Mackenzie, v. 7, n. 1, p. 125-147, 2009.

LEWIS, W. A. The theory of economic growth. Homewood, Illinois: Richard D. Irwin, 1955.

LOBELL, D. B.; GOURDJI, S. M. The influence of climate change on global crop productivity. Plant Physiology, v. 160, p. 1686-1697, 2012.

LUGOVOY, O. Examining GTAP parameters using bayesian approach. In: 12th ANNUAL CONFERENCE ON GLOBAL ECONOMIC ANALYSIS. Proceedings […]. Santiago, Chile: Global Trade Analysis Project (GTAP), 2009. Disponível em: https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=3121. Acesso em: 06 abr. 2020.

McKITRICK, R. The econometric critique of computable general equilibrium modeling: the role of functional forms. Economic Modeling, v. 15, n. 4, p. 543-573, 1998.

MENDELSOHN, R.; NORDHAUS, W. D.; SHAW, D. The impact of climate on agriculture: a Ricardian analysis. The American Economic Review, v. 84, n. 4, p. 753-771, 1994.

MINGOTI, S. A. Análise de dados através de métodos de estatísticas multivariada: uma abordagem aplicada. Belo Horizonte: UFMG, 2007.

OREIRO, J. L.; LEMOS, B. P.; MISSIO, F. J.; PADILHA, R. A. Qual a taxa potencial de crescimento da economia brasileira? Uma análise com base na calibragem de dois modelos tradicionais de crescimento econômico. Revista de Economia, v. 31, n. 2, p. 34-46, 2005.

PEROBELLI, F. S.; BETARELLI JUNIOR, A. A.; VALE, V. A.; CUNHA, R. G. Mercados tradicionais e potenciais do agronegócio brasileiro: efeitos da expansão de demanda no comércio internacional. Revista de Economia e Sociologia Rural, v. 55, p. 343-366, 2017.

ROSTOW, W. W. The stages of economic growth. The Economic History Review, v. 12, n. 1, p. 1-16, 1959.

SANGHI, A.; ALVES, D.; EVENSON, R. E.; MENDELSOHN, R. Global warming impacts on Brazilian agriculture: estimates of the Ricardian model. Economia Aplicada, v. 1, n. 1, p. 7-33, 1997.

SANGHI, A.; MENDELSOHN, R. The impacts of global warming on farmers in Brazil and India. Global Environmental Change, v. 18, n. 4, p. 655-665, 2008.

TANURE, T. M. P. Mudanças climáticas e agricultura no Brasil: impactos econômicos regionais e por cultivo familiar e patronal. 2020. 259 f. Tese (Doutorado em Economia) – Cedeplar, Universidade Federal de Minas Gerais, Belo Horizonte, 2020.

THOMPSON, W. Population. American Journal of Sociology, v. 34. n. 1, p. 3-15, 1928.

TIMMINS, C. Endogenous land use and the Ricardian valuation of climate change. Environmental & Resources Economics, v. 33, n. 1, p. 119-142, 2006.

TOLENTINO, C. M.; SILVA, L. A.; DE BRITTO ROCHA, G. Mensurando sistemas nacionais de inovação: evidências a partir da análise multivariada de dados. Gestão e Sociedade, v. 11, n. 28, p. 1651-1679, 2016.

TORREY, B. B.; TORREY, E. F. Population increases and agricultural productivity. The fight against hunger and malnutrition: the role of food, agriculture, and targeted policies. Oxford: OUT, 2015.

UNITED NATIONS. Department of Economic and Social Affairs, Population Division. World Population Prospects 2019, Online Edition. Rev. 1, 2019a. Disponível em: https://population.un.org/wpp/Download/Standard/Population/. Acesso em: 06 abr. 2020.

UNITED NATIONS. Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: methodology of the United Nations population estimates and projections (ST/ESA/SER.A/425). 2019b. Disponível em: https://population.un.org/wpp/Publications/Files/WPP2019_Methodology.pdf. Acesso em: 06 abr. 2020.

VAN MEIJL, H.; VAN RHEENEN, T.; EICKHOUT, B. The impact of different policy environments on agricultural land use in Europe. Agriculture, Ecosystems & Environment, v. 114, n. 1, p. 21-38, 2006.

VILLORIA, N. B.; MCDOUGALL, R. FlexAgg2.0: an improved version of the data aggregation Program FlexAgg.Center for Global Trade Analysis, Purdue University, 2012. (GTAP 8 Data Base Documentation). Disponível em: https://www.gtap.agecon.purdue.edu/resources/download/5868.pdf. Acesso: 30 mar. 2020.

WORLD BANK. DataBank. 2020. Disponível em: https://databank.worldbank.org/databases. Acesso em: 30 mar. 2020.

Published

2020-09-28

How to Cite

Faria, W. R., Salgueiro Perobelli, F., & Lima de Oliveira Souza, D. (2020). Population projection, climate change and economic effects: assessment based on agricultural economic blocks. Brazilian Journal of Population Studies, 37, 1–33. https://doi.org/10.20947/S0102-3098a0125

Issue

Section

Original Articles