Funciones modelo de migración: límites y aplicaciones
DOI:
https://doi.org/10.20947/S0102-3098a0101Palabras clave:
Modelo de Rogers-Castro, Función de migración estándar de edad, BrasilResumen
La migración es un evento demográfico altamente selectivo por edad y interdependiente entre grupos de edad. La necesidad de estimar los patrones de migración como entrada para las proyecciones demográficas motivó a Andrei Rogers y sus colaboradores a desarrollar lo que se conoció como el modelo de Rogers-Castro, o funciones del modelo de migración. Este artículo hace uma discussíon del modelo, sus limites y potencialidad de aplicación e estúdios demográficos. A pesar de describir razonablemente bien el patrón migratorio por edad, la dificultad de estimación y la inestabilidad de los parámetros se convierten en obstáculos para la aplicación del modelo. A pesar de sus limitaciones, sus ventajas analíticas y de proyección
aún no se han superado, siendo un buen predictor del patrón de la función de migración en situaciones de datos escasos o poco confiables. Finalmente, el modelo de Rogers-Castro funciona bien al describir la migración doméstica a escala nacional del Censo Demográfico Brasileño de 2010. Otros estudios en unidades territoriales más pequeñas o con el tiempo, con fuentes alternativas, son propuestas como aplicaciones potenciales del modelo.
Descargas
Citas
AMARAL, E. F. L. Funções de migração por idade e caracterização de migrantes das microrregiões de Goiás e Distrito Federal. Dissertação (Mestrado) – Centro de Desenvolvimento e Planejamento Regional (Cedeplar), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 2002.
AMARAL, E. F. L. Improvements of techniques to estimate migration rates: an application with brazilian census data. Population Review, v. 47, n. 2, p. 1-24, 2008.
AMARAL, E. F. L.; RIOS-NETO, E. L.; POTTER, J. E. The influence of internal migration on male earnings in Brazil, 1970-2000. Migration and Development, v. 5, n. 1, p. 55-78, 2016.
BELL, M. et al. Internal migration and development: comparing migration intensities around the globe. Population and Development Review, v. 41, n. 1, p. 33-58, 2015.
BELTRÃO, K. I.; HENRIQUES, M. H. F. Modelagem da migração líquida rural-urbana no Brasil: décadas de 1960/1970 e 1970/1980. Previdência em Dados, Rio de Janeiro, v. 2, n. 3, p. 23-36, 1987.
BERNARD, A.; BELL, M.; CHARLES-EDWARDS, E. Improved measures for the cross-national comparison of ages profiles of internal migration. Population Studies, v. 68, n. 2, p. 179-195, 2014a.
BERNARD, A.; BELL, M.; CHARLES-EDWARDS, E. Life-course transitions and the age profile of internal migration. Population and Development Review, v. 40, n. 2, p. 213-239, 2014b.
CASTRO, L.; ROGERS, A. Migration age pattern: measurement and analysis. Laxemburg, Austria: International Institute for Applied System Analysis, 1979 (IIASA Working Paper, 79-16).
CASTRO, L.; ROGERS, A. Model migration schedules: a simplified formulation and an alternative parameter estimation method. Laxenburg, Austria: International Institute for Applied Systems Analysis, 1981. (IIASA Working Paper, 81-63).
CASTRO, L.; ROGERS, A. What the age composition of migrants can tell us. Laxenburg, Austria: International Institute for Applied Systems Analysis, 1984 (Research Report, 85-3).
COALE, A. J.; MCNEIL, D. R. The distribution by age of the frequency of first marriage in a female cohort. Journal of the American Statistical Association, v. 67, n. 340, p. 743-749, December 1972.
CONGDON, P. Models for migration age schedules: a Bayesian perspective with an application to flows between Scotland and England. In: RAYMER, J.; WILLEKENS, F. International migration in Europe: data, models and estimates. Chichester-UK: John Willey & Sons, Ltd, 2008. p. 193-204.
ELZHOV, T.; MULLER, K.; BOLKER, B. R interface to the Levenberg-Marquardt nonlinear leastsquares algorithm found in MINPACK. Plus Support for Bounds, 2010.
JANUZZI, P. de M. Perfis etários da migração por motivo e acompanhantes da mudança: evidências empíricas para São Paulo entre 1980 e 1993. Revista Brasileira de Estudos de População, Brasília, v. 15, n. 2, p. 19-43, 1998.
LITTLE, J.; DORRINGTON, R. The multi-exponential model migration schedule. In: MOULTRIE, T. et al. Tools for demographic estimation. Paris: International Union for the Scientific Study of Population, 2013. p. 390-402.
LITTLE, J.; ROGERS, A. What can the age composition of a population tell us about the age composition of its out-migrants? Population, Space and Place, v. 13, p. 23-39, 2007.
MACHADO, C. C. Projeções multirregionais da população: o caso brasileiro (1980-2020). Tese (Doutorado) – Centro de Desenvolvimento e Planejamento Regional (Cedeplar), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 1993.
MCNEIL, D. R.; TRUSSEL, J.; TURNER, J. C. Spline interpolation of demographic data. Demography, v. 14, n. 2, p. 245-252, May 1977.
MULDER, C. H.; WAGNER, M. Migration and marriage in the life course: a method for studying synchronized events. European Journal of Population, v. 9, p. 55-76, 1993.
PRESTON, S. H.; HEUVELINE, P.; GUILLOT, M. Demography: measuring and modeling population processes. Oxford: Blackwell Publishing, 2001.
R CORE TEAM. R: a language and environment for statistical computing. Vienna, Austria, 2017. Disponivel em: https://www.R-project.org/.
RAYMER, J.; ROGERS, A. Applying model migration schedules to represent age-specific migration flows. In: RAYMER, J.; WILLEKENS, F. International migration in Europe: data, models and estimates. Chichester, England: John Wiley & Sons Ltd, 2008. p. 175-191.
ROGERS, A. Demometrics of migration and settlement. In: ROGERS, A.; WILLEKENS, F. Migration and settlement: measurement and analysis. Laxemburg, Austria: International Institute for Applied System Analysis, 1978. p. 83-109.
ROGERS, A.; CASTRO, L. Model migration schedules. Laxemburg, Austria: International Institute for Applied Systems Analysis,1981. (Research Report, 81-30)
ROGERS, A.; CASTRO, L.; LEA, M. Model migration schedules: three alternative linear parameters estimation methods. Mathematical Population Studies, v. 12, p. 17-38, 2005.
ROGERS, A.; LITTLE, J.; RAYMER, J. The indirect estimation of migration: methods for dealing with irregular, inadequate and missing data. Dordrecht: Springer, 2010.
ROGERS, A.; RAQUILLET, R.; CASTRO, L. Model migration schedules and their applications. Laxemburg, Austria: International Institute for Applied Systems Analysis, 1977. (Research Memoranda, 77-57).
ROGERS, A.; RAYMER, J. Fitting observed demographic rates with the multiexponential model schedule: an assessment of two estimation programs. Review of Urban & Regional Development Studies, v. 11, n. 1, p. 1-10, 1999.
ROGERS, A.; WATKINS, J. General versus elderly interstate migration and population redistribution in the United States. Research on Aging, v. 9, n. 4, p. 483-529, 1987.
ROGERS, A.; WILLEKENS, F.; LEDENT, J. Migration and settlement: a multiregional comparative study. In: ROGERS, A. Multiregional demography: four essays. Laxenburg, Austria: International Institute for Applied Systems Analysis, 1984. p. 88.
WILLEKENS, F. Understanding the interdependence between parallel careers. In: SIEGERS, J. J.; DE JONG-GIERVELD, J.; VAN IMHOFF, E. Female labour market behaviour and fertility: a rational choice approach. Berlin: Springer, 1991. p. 2-31.
WILSON, T. Model migration schedules incorporating student migration peaks. Demographic Research, Rostock, v. 23, n. 8, p. 191-222, July 2010.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los artículos publicados en Rebep son originales y están protegidos bajo la licencia de tipo atribución Creative Commons (CC-BY). Esta licencia le permite reutilizar las publicaciones en su totalidad o en parte para cualquier propósito, de forma gratuita, incluso con fines comerciales. Cualquier persona o institución puede copiar, distribuir o reutilizar el contenido, siempre que se mencione debidamente el autor y la fuente original.